
THE TOWNSHIP OF NORTH DUNDAS

BRIDGE MANAGEMENT STUDY FINAL REPORT 17 BRIDGES / 28 CULVERTS

DECEMBER 2025

Report Submitted By:

HP Engineering Inc.

221-2039 Robertson Road, Ottawa, Ontario, K2H 8R2

Office: 613-695-3737 ~ Fax: 613-680-3636

1.0	Introduction	1
2.0	Structure Inspections.....	1
3.0	Determination of Budget Costs	2
3.1	Structure Repair, Rehabilitation and Replacement Construction Costs.....	2
3.2	Engineering Investigation / Detailed Design Costs	3
4.0	Bridge Condition Indices (BCI).....	5
5.0	Routine Maintenance	6
6.0	Asset Management Information	7
7.0	Discussion	8

Appendices

Appendix A Asset Management Summary

Attachments

Attachment 1 2025 OSIM Inspection Reports

1.0 INTRODUCTION

The Township of North Dundas (The Township) has retained HP Engineering to perform inspections and develop a bridge management study for 45 structures (17 bridges and 28 culverts) owned and maintained by the Township.

Each structure in the Township's inventory was visually inspected using the Ministry of Transportation of Ontario's (MTO) Structure Inspection Manual. The inspection data was then utilized to generate updated inspection forms for each structure. The inspection forms generally present the results of the visual observations (including site photographs), condition ratings of each element, recommended further investigations, recommended rehabilitation and maintenance needs, and provide budget cost information. Refer to the *Appendix A* for a summary table of all structures and *Attachment 1* for individual inspection reports for all structures.

2.0 STRUCTURE INSPECTIONS

A total of 45 structures (17 bridges and 28 culverts) owned and maintained by the Township were visually inspected in accordance with the MTO Structure Inspection Manual. The inspections were performed during the Summer of 2025.

For each structure, components were screened for visual signs of deterioration. The components were then given a rating (on the inspection forms) using the MTO extent and severity method, whereby the components are proportioned (in units of m^2 , %, m, etc.) based on their observed conditions (excellent, good, fair, poor). This provides quantitative data as to the extent of the observed deterioration for each component. Explanatory statements accompany each of the components' ratings where deemed applicable by the inspector.

The inspection forms also provide information regarding suggested engineering investigation and repairs and associated budgetary estimates of expected costs. Suggested engineering investigations are subdivided based on time of need. Repairs and associated budgetary estimates are subdivided based on time of need. The basis of selection for budget costs is further discussed in Section 3.0 of this report.

Photographs of each inspected structure are included with the inspection sheets including a minimum of 2 photographs for each structure (approach and elevation). Additional photographs depicting the details of the structure, observed defects or deterioration have also been included.

Individual inspection forms for the structures are included as an attachment where the structures are separated into sequential order.

3.0 DETERMINATION OF BUDGET COSTS

3.1 Structure Repair, Rehabilitation and Replacement Construction Costs

Given the cursory information obtained during the visual inspections and without the benefit of supplemental investigations and preliminary / detailed design, it is impractical to develop detailed cost estimates for each structures' rehabilitation needs. For these reasons, benchmark budget costs were developed for categories of element repair, major / minor structure rehabilitation and full structure replacement. Traditionally, benchmark costs do not necessarily provide accurate costs for individual structure repairs or replacement but have proven to provide sufficient accuracy for global budgeting purposes when dealing with a large number of structures.

For the purpose of this study, benchmark costs for the rehabilitation and replacement of bridge structures are based on maintaining the existing width, length and alignment of each structure. More accurate costs for each structure would be provided upon the completion of further engineering studies and design based on exact renewal needs (including potential changes in geometry). The following sections present the benchmark costs that have been established for this study.

Bridge Replacement Costs

Budget costs for the replacement of bridges are usually based on the deck surface area of individual structures (m^2). Therefore, benchmark replacement costs for this study were determined using the following unit costs including approaches (e.g., asphalt works and guiderail), traffic management (e.g., road closures or staging), and other auxiliary costs (e.g., sitework costs, utility protection, etc.). In addition, the varying widths of bridges were also considered to provide more realistic unit costs and to avoid large discrepancies in the replacement cost between bridges of different lengths, but similar surface areas.

Structure Replacement Benchmark Unit Costs		
Bridge Length (m)	Width (m)	Unit Replacement Cost (\$/m ²)
3-10	<10 m	\$14,000.00
	≥10 m	\$13,000.00
10-20	<10 m	\$12,000.00
	≥10 m	\$11,000.00
20-30	<10 m	\$10,000.00
	≥10 m	\$9,500.00
>30	<10 m	\$9,000.00
	≥10 m	\$8,500.00

For culverts, the above unit cost table was also utilized; however, the 'bridge length' was taken as the overall length of the barrel, and the 'width' was taken as the span of the barrel. In the case of a multi-

barrel culvert, only the span of a single barrel was utilized. The above methodology for the estimation of culvert replacement costs was generally found to provide a more realistic value for the replacement costs of culverts.

Structure Repair / Rehabilitation Costs

For budgeting purposes, costs for the rehabilitation of structures (bridges and culverts) are typically expressed as a percentage of the total replacement costs. Rehabilitation costs for this study are separated into three main categories as presented in the table below.

Structure Rehabilitation Benchmark Costs		
	Category	% of Replacement Cost
1.	Major Structure Rehabilitation	60
2.	Minor Structure Rehabilitation	25
3.	Individual Element Rehabilitation	5

It should be noted that unit repair costs for individual elements are not used in the budget calculations, rather, when an element has reached a condition state where rehabilitation becomes warranted, an element rehabilitation cost of 5% of the structure replacement cost is utilized. This value is considered more accurate since, often with more minor rehabilitation, auxiliary costs (e.g., traffic control, sitework, access, etc.) can be a significant portion of the overall cost of the work. For structures where multiple elements have reached a condition state where rehabilitation becomes warranted, either the 'minor structure rehabilitation' or 'major structure rehabilitation' categories are then used.

3.2 Engineering Investigation / Detailed Design Costs

Further engineering investigations and evaluations are recommended for some of the bridges and culverts as indicated on individual inspection forms and in the summary table in *Appendix A*. Similar to the structure replacement costs, benchmark budget costs for engineering investigation and evaluations that have been derived do not necessarily provide accurate costs for individual structures but have proven to provide sufficient accuracy for global budgeting purposes when dealing with a large number of structures. The benchmark costs derived are presented in the table below:

Engineering Investigations and Evaluations Benchmark Costs			
	Category	Type of Structure / Type of Investigation	Cost
1.	Detailed Inspection / Rehabilitation Study - Full Bridge	Truss	\$25,000.00
		Other Bridges	\$22,000.00
		Culverts	\$20,000.00
2.	Roadside Safety Review	Traffic Barrier Only *	\$5,000.00
3.	Detailed Deck Condition Survey	Exposed Deck	\$15,000.00
		Asphalt Paved Deck	\$20,000.00

		Concrete Culvert with Height of Fill Less than 500 mm **	\$8,000.00
4.	Structure Evaluation	Truss	\$17,500.00
		Others	\$15,000.00
5.	Supplemental Inspections	Underwater Investigation	\$13,000.00
		Boat Inspection	\$5,000.00
		Bridgemaster Inspection	\$10,000.00
	Structure Monitoring	All Structures	\$5,000.00

* Recommendations for Roadside Safety Reviews were developed individually for each structure. This assessment was based on a preliminary review of existing traffic barrier and approach guiderail configurations (or their absence), drawing upon our experience with such installations, knowledge of current standards, and sound engineering practice. For structures where only a Roadside Safety Review was recommended (without an accompanying Rehabilitation / Replacement Study), a specific year of completion was not assigned in the *Appendix A* Summary Table. In these instances, we recommend that the Township conduct an internal review and risk assessment to determine the necessity and timing of such a study.

** Deck condition survey on concrete culvert includes cores with no corrosion potential survey. Deck condition surveys on concrete culverts with a height of fill greater than 500 mm are not practical.

In addition to the engineering investigations and evaluations benchmark costs as presented in the table above, the summary table presented in *Appendix A* also provides an estimate of benchmark costs for the preliminary and detailed costs for element rehabilitation, minor / major structure rehabilitation and full structure replacement. These benchmark costs are meant to include common tasks that are typically required for the rehabilitation or replacement of these types of structures including environmental studies, subsurface investigations, and contractor administration. For the purpose of budgeting, these costs are set at 10% of the overall rehabilitation or replacement cost. There could be reasons why this percentage cost model may be inaccurate for some structure rehabilitations or replacements including work within sensitive waterways, extremely poor subsurface conditions, requirements to widen structure (e.g., increase overall structure width to accommodate additional traffic lanes, wider side clearances, cycling facilities, etc.); however, these costs cannot be predicted with more accuracy until further engineering investigations and evaluations and as least some type of preliminary design has been completed.

4.0 BRIDGE CONDITION INDICES (BCI)

Bridge Condition Index (BCI) values were derived using MTO's standard methods as outlined in their document entitled 'Bridge Condition Index, an Overall Measure of Bridge Condition' (July 2009). Based on this document, we utilize an excel spreadsheet (developed based on the parameters outlined in the document) that, after inputting the inspection data for each element (condition ratings), automatically calculates the BCI value.

With the calculated BCI values for each structure, an overall picture of the general condition of the Township's structures inventory as a whole can then be presented by summarizing BCI ranges (good, fair, poor) and counting the overall percentage of structures in each category. This is the methodology that the MTO currently utilizes and it is generally an effective tool to determine where the Township stands in terms of the overall condition and maintenance needs for their structure inventory. This information can be used to compare the overall condition of various structures, to assist in prioritizing structures for future rehabilitation and assist in the funding application process.

The BCI ranges that are normally included in this summary table are as follows:

- Excellent (BCI Range of 80-100); for this range, maintenance / rehabilitation work is not usually required within the next fifteen years.
- Good (BCI Range 70-80); for this range, maintenance / rehabilitation work is not usually required within the next 10 years.
- Fair (BCI Range 60-70); for this range, maintenance / rehabilitation work is usually required / scheduled within the next five to ten years. Carrying out work within this timeframe is typically considered the ideal time to get the most out of bridge spending.
- Poor (BCI Less than 60); for this range, maintenance / rehabilitation work is usually required / scheduled within the next one to five years.

For the Township's inventory (45 structures total [17 bridges and 28 culverts]), the current summary of BCI ranges is presented as follows (individual structure BCI values are presented in the tables in *Appendix A*):

<i>BCI Range</i>	<i>Number of Structures in Range</i>	<i>% of Structures in Range</i>
80-100	3 structure (2 bridges / 1 culvert)	7
70-80	23 structures (12 bridges / 11 culverts)	51
60-70	12 structures (2 bridges / 10 culverts)	27
Less than 60	7 structures (1 bridge / 6 culverts)	15

5.0 ROUTINE MAINTENANCE

As part of the Township's overall bridge management program, a program of routine maintenance should be implemented and up kept for all structures. Maintaining this program will assist in minimizing the potential for premature deterioration of structural elements; and, when combined with a program of bridge rehabilitation, will assist in maximizing the useful service life of the Township's structure inventory.

Overall routine maintenance needs will vary depending on the type of structure, location, traffic volumes, winter maintenance procedures (sanding vs. salting, etc.), size of the structure, vintage and previous maintenance / rehabilitation carried out on the structure in the past. The following presents a general summary of routine maintenance operations that are considered applicable for the structures present within the Township's inventory:

- Periodic bridge cleaning: this would include power-washing of all components exposed to roadway traffic and areas where debris accumulation is prevalent. This would include asphalt wearing surfaces, expansion joint gaps, edges of roadway, bearing seats, truss bottom chords, etc. Typically, this operation would be carried out on an annual basis, most likely each spring after winter sanding / salting operations have ceased; however, in some cases (i.e., gravel approach roadways, etc.), an increase in the number of cleanings per year may be required.
- Concrete spot repairs: this would generally include localized patching of small concrete spalls and delaminations located in areas within the roadway splash zones (top of deck, curbs, expansion joint block-outs, etc.). Completing these repairs will assist in preventing accelerated deterioration of concrete in these areas by reducing the ingress of chlorides, etc. There is no specific timing for these types of repairs and they are generally performed on an as-needed basis.
- Steel spot repairs / spot coating; this would generally include localized touch-ups to steel coatings located in areas within the roadway splash zones (truss bottom chords, exterior floor beams / stringers, etc.) as well as localized spot repairs in areas of appreciable section loss / corrosion. There is no specific timing for these types of repairs and they are generally performed on an as-needed basis.
- Clearing of debris in waterway; this would include clearing of trapped debris in the vicinity of the structure (upstream / downstream). This operation would typically be carried out on an annual basis, after the spring run-off period.
- Asphalt surface repairs / rout and seal; this would include cold patch asphalt repairs, routing and sealing of wide cracks in asphalt. This operation would typically be carried out an annual basis, after winter clearing operations have ceased.
- Re-grading of approach roadways (gravel roadway surfaces); this would include placing and grading fresh granular material on roadway surfaces. The timing of this work would depend on the overall volume and type of traffic typically traversing the roadway (truck haul route, summer cottage traffic route, etc.). Typically, this work would be carried out on an annual or bi-annual basis.

- Bridge deck drainage: this would include maintaining existing deck drains free of debris and maintaining them in an un-plugged condition. This operation would typically be carried out on an annual basis, after winter clearing operations have ceased.
- Clearing of debris / vegetation from approach guiderail; this would involve removing debris and vegetation from in front of approach guiderail. Although this is mainly a safety measure (to ensure proper performance of the guiderail), it also assists in prolonging the lifespan of the guiderail (accumulation of debris can accelerate rot on wooden posts, corrosion on steel guiderail, etc.).
- Surface sealing of exposed concrete surfaces; this would include cleaning and applying a concrete sealer on concrete surfaces exposed within the splash zone (exposed concrete decks, curbs, sidewalks, and barrier walls); this operation is not typically required on an annual basis and would typically be completed in 3-5 year intervals. Sealing concrete surfaces periodically assists in minimizing the migration of chlorides into the concrete.

6.0 ASSET MANAGEMENT INFORMATION

As previously mentioned, all structures were visited and inspected in conformance with the requirements of the Ontario Structure Inspection Manual (2018 Revision). Based on the results of the inspections, additional engineering investigations and evaluations were recommended and repair / rehabilitation needs were also identified, with budgetary costs provided for each.

Although OSIM inspections (generally performed every 2 years) are a useful screening tool to identify upcoming structure needs and costs, these inspections solely rely on visual evidence of deterioration and do not take into account the age (life cycles) of individual structures, nor do they take into account the potential for hidden deterioration (which could be revealed with further investigations such as detailed bridge condition surveys, rehabilitation studies, etc.).

To provide the Township with a more useful planning tool for the management of their structure inventory, all the information gathered from the OSIM inspections was summarized in an asset information summary table (refer to *Appendix A*). This table presents basic asset information for the structures such as structure name, structure location, type of structure, basic geometry, year constructed / year last rehabilitated, and replacement value in 2025 dollars (based on current geometry). The table also presents updated BCI values for each structure as calculated by HP Engineering, based on the individual updated element condition ratings for each structure.

The table also provides a proposed year-by-year 10-year asset management plan for the structures. The year-by-year plan takes into consideration the age of the structures and their known (major) rehabilitation history. The plan assumes a distribution of the structure replacements and major / minor rehabilitation works per year over the next 10 years. A breakdown of the 10-year asset management plan presenting year anticipated costs based on the recommendations provided is presented in Appendix B.

It is noted that the asset management information as discussed above (and presented in *Appendix A*) was developed based on the current information available for the structures, the results of the current OSIM inspections and based on the overall assumptions presented above.

7.0 DISCUSSION

HP Engineering has completed the biennial inspections of a total of 45 structures (17 bridges and 28 culverts) owned and maintained by the Township of North Dundas. The field inspections were conducted in the summer of 2025.

After the completion of the inspections, inspection forms were prepared for each individual structure and are appended in Attachment 1. A Summary Table (presented in *Appendix A*) was also developed to provide the Township of North Dundas with the necessary information to develop preliminary budgets and set priorities for future further structure investigations / evaluations and structure rehabilitation / replacement programs. This Table should get updated yearly as work is undertaken. The costs for individual structures (as presented in the Summary Table) are based on benchmark costs developed for this study and should be used for budgeting purposes only. It should be noted that, in most cases, more accurate cost estimates for each structure's needs could only be developed upon completion of the additional engineering investigation / evaluations and upon completion of at least a preliminary level of design. Caution should be exercised in utilizing these numbers at face value for future budget planning.

We trust this report and attachments satisfies the Township's requirements. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

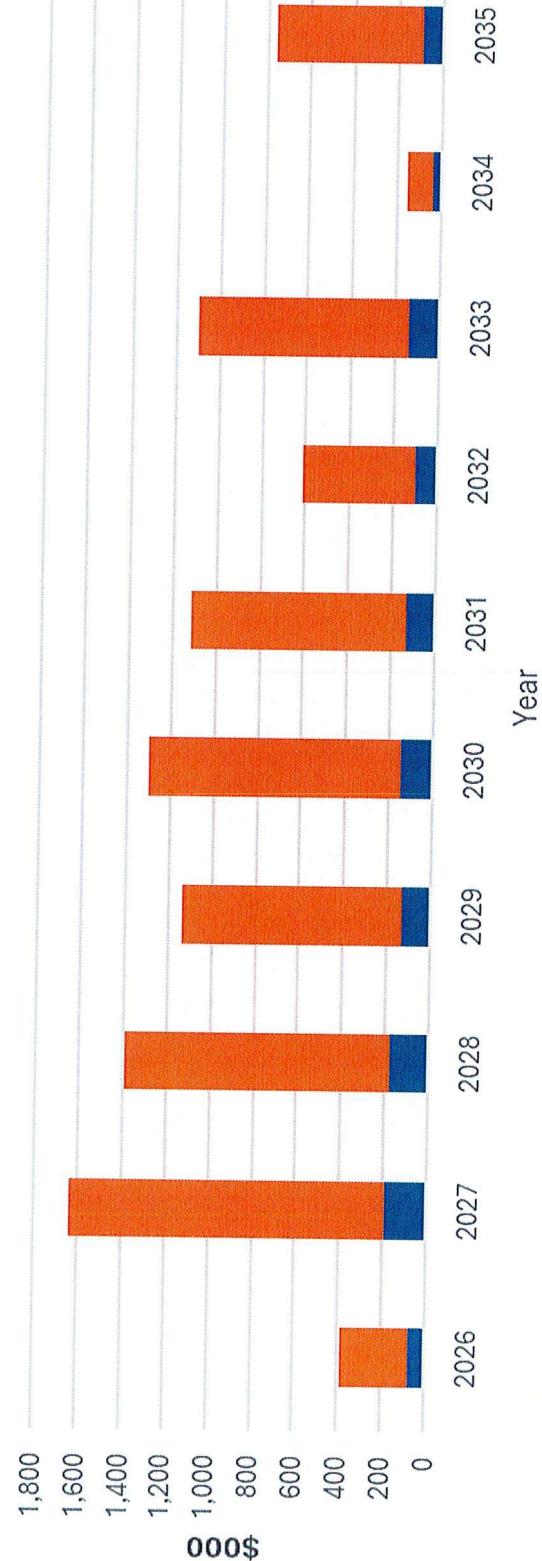
Respectfully Submitted,
December 24, 2025

HP
ENGINEERING
HP ENGINEERINC INC.

Tashi Dwivedi, P.Eng.
President

APPENDIX A
ASSET INFORMATION SUMMARY

Appendix A : Asset Information Summary- Sorted by Year


APPENDIX B

FORECAST CAPITAL EXPENDITURE

Appendix B : Forecast Capital Expenditure

<i>North Dundas</i>			
Year	Additional Investigation / Engineering Design / Contract Administration (\$000)	Recommended Work Costs (\$000)	
2026	76	314	
2027	196	1,440	
2028	176	1,213	
2029	131	1,008	
2030	146	1,155	
2031	129	987	
2032	101	510	
2033	141	959	
2034	39	119	
2035	92	665	
AVERAGE	\$122,593	\$836,933	
SUB TOTAL	\$1,225,933	\$8,369,330	
	COMBINED TOTAL COSTS		\$9,595,263

10-Year Capital Costs

■ Additional Investigation / Engineering Design / Contract Administration (\$000) ■ Recommended Work Costs (\$000)