

Previous Studies

Township of North Dundas Main Street West SPS Upgrades Schedule 'B' Class EA: Appendix A – Previous Studies

Documents	Comments	Received
01 REPORTS/STUDIES		
2012 Township of North Dundas Village of Winchester Sanitary Sewer System Capacity Assessment (JLR)	Developed a working SewerCAD® model of the Winchester wastewater collection system and evaluate capacity	~
2017 Village of Winchester – Main Street West Pumping Station Assessment (JLR)	Assess the capacity of the existing Main Street West Pumping Station (PS), based on current development and operation of the pumping station, a proposed gas station/car wash site and future development envisioned as part of the Class EA	¥
2018 Supporting Docs for ECA Amendment (OCWA)	Provided supporting information to complete the ECA Amendment and included Stantec's 2005 Design Brief for Main Street West SPS	~
2019 Township of North Dundas – Winchester Wastewater Capacity Assessment (JLR)	Assesses the remaining wastewater capacity of the Main Street West Sewage Pumping Station (SPS), Bailey Street SPS and trunk gravity sewers in Winchester, Ontario	~
2020 Township of North Dundas Drinking Water Supply System Capacity Expansion Class EA, Technical Memorandum No.1 Population Growth and Development Projection (JLR)	Established the proposed 20-year population projections for the Village of Winchester and Village of Chesterville within the Township boundary by determining their potential development opportunities for growth	~
2020 Township of North Dundas Water and Wastewater Servicing Study (JLR)	Assesses the ability of existing sanitary and potable water infrastructure to support future growth and development.	~
02 APPROVALS	·	
May 16, 2005 ECA	ECA No. 4037-6CAMCT	✓
2019 ECA Amendment	ECA No. 9743-B9ALZN	~

TOWNSHIP OF NORTH DUNDAS VILLAGE OF WINCHESTER SANITARY SEWER SYSTEM CAPACITY ASSESSMENT

December, 2012

Prepared for:

ONTARIO CLEAN WATER AGENCY

1700 – One Yonge Street Toronto, Ontario M5E 1E5

and

TOWNSHIP OF NORTH DUNDAS

P.O. Box 489 636 St. Lawrence Street Winchester, Ontario K0C 2K0

Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED

Consulting Engineers, Architects and Planners 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2

JLR No. 25447

TOWNSHIP OF NORTH DUNDAS VILLAGE OF WINCHESTER SANITARY SEWER SYSTEM CAPACITY ASSESSMENT

- TABLE OF CONTENTS -

1.0	INTRC 1.1	DUCTION Background	.1 .1
	1.2	Objectives	.1
2.0	STUD	Y AREA DESCRIPTION	.2
	2.1	Existing Study Area	.2
	2.2	Potential Future Development Areas	.2
3.0	FLOW	MONITORING PROGRAM (2012)	.3
	3.1	Description	.3
	3.2	Data Evaluation	.3
4.0	SANIT	ARY SEWER MODEL DEVELOPMENT	.8
5.0	FLOW	MODELLING OF EXISTING CONDITIONS	.9
6.0	FLOW	MODELLING OF POTENTIAL FUTURE CONDITIONS1	0
7.0	DISCU	ISSION1	1
8.0	RECO	MMENDATIONS1	2

- LIST OF FIGURES -

Figure 1:	Key Plan
1 19010 11	1.00 / 1.10011

- Figure 2: Existing Conditions
- Figure 3: Potential Future Development
- Figure 4: Monitoring Program

- LIST OF APPENDICES -

- Appendix 'A': Annual Consumption Data High Water Users
- Appendix 'B': Memorandum West Service Area Future Development
- Appendix 'C': Hyde Park Servicing Brief
- Appendix 'D': Flow Monitoring Data ADDWF Hydrographs, Baseline Infiltration, Per Capita Flow Rates and Wet Weather Response
- Appendix 'E': Pump Curves
- Appendix 'F': Existing Peak Wet Weather Flow Summary Table and Schematic
- Appendix 'G': Future Peak Wet Weather Flow Summary Table and Schematic

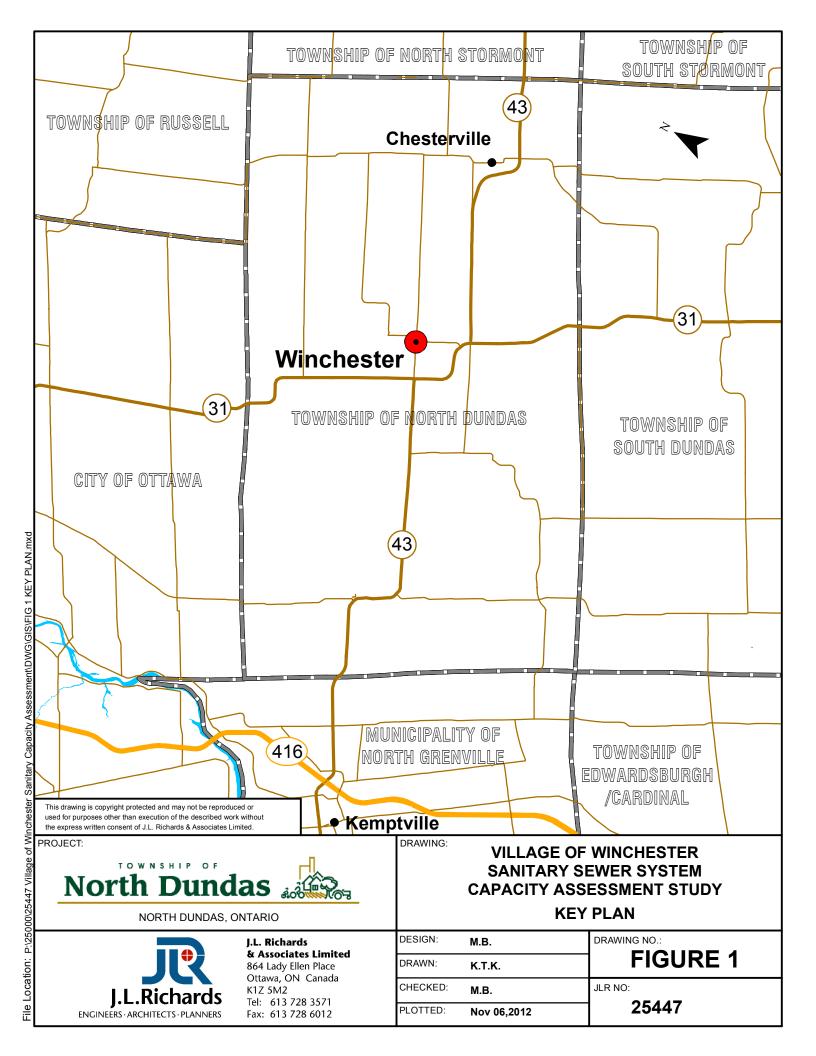
TOWNSHIP OF NORTH DUNDAS VILLAGE OF WINCHESTER SANITARY SEWER SYSTEM CAPACITY ASSESSMENT

1.0 INTRODUCTION

1.1 Background

The Village of Winchester (Village) is located approximately 45 km southeast of the City of Ottawa in the Township of North Dundas (refer to Figure 1). The entire Village covers a total area of approximately 187 hectares, with an estimated total population of approximately 2,500. Residents of this urban area are serviced by a communal water supply/distribution system and a communal wastewater collection/treatment system. The wastewater system consists of a gravity sewer collection system, several local pumping stations with forcemains and a wastewater treatment lagoon.

Local operational knowledge and experience suggests that certain portions of Winchester's sewer system may be nearing their design capacity. In addition there is substantial development, conceptually proposed in the west end of the community. As such, the Village in association with the Ontario Clean Water Agency (OCWA) identified the need to assess the capacity of the sanitary sewer system.


1.2 Objectives

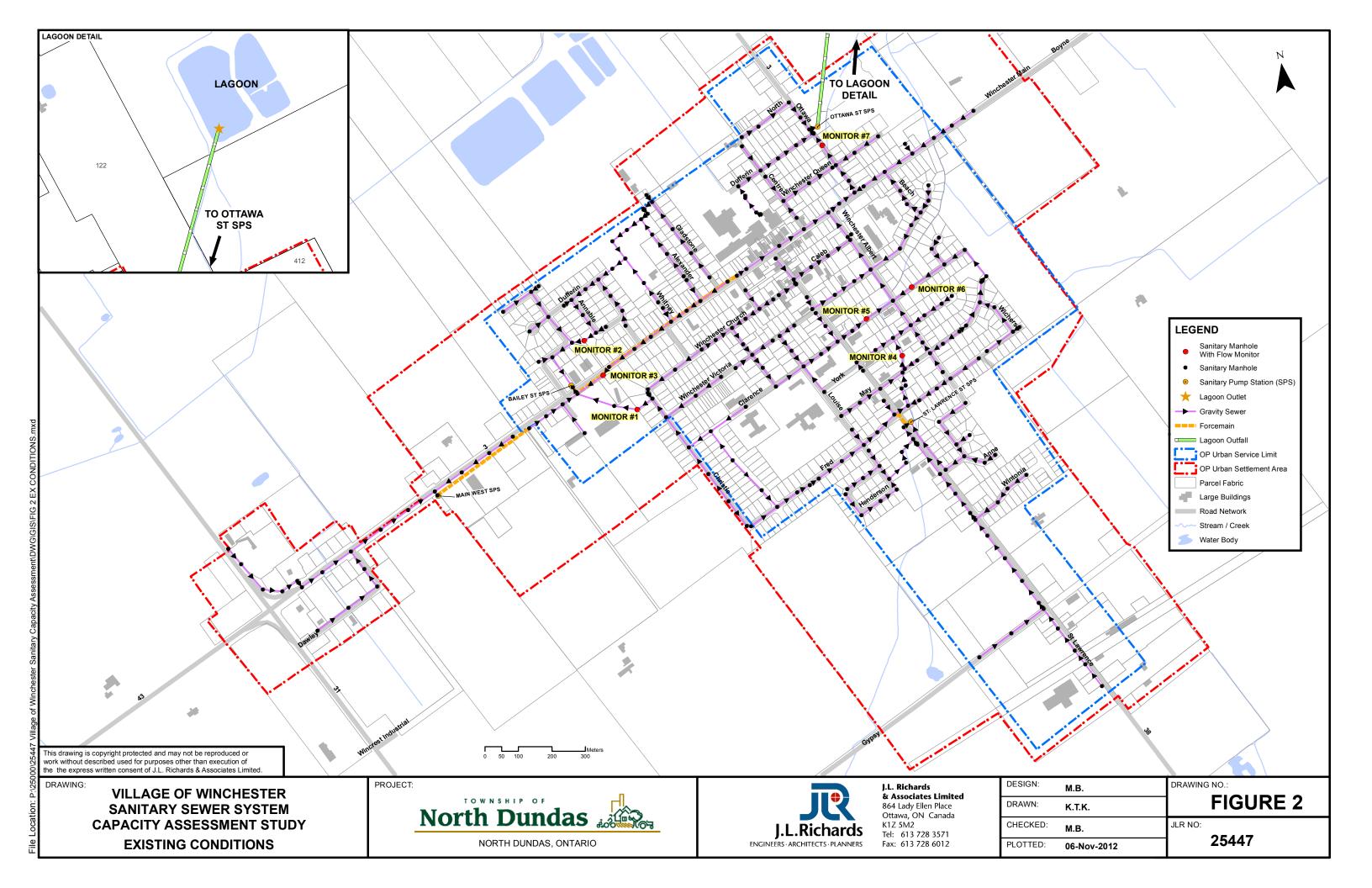
J.L. Richards & Associates Limited (JLR) in association with Flowmetrix Technical Services Inc. (Flowmetrix) was retained by the Village in the Spring of 2012 to develop a working SewerCAD® model of the Winchester wastewater collection system and evaluate capacity.

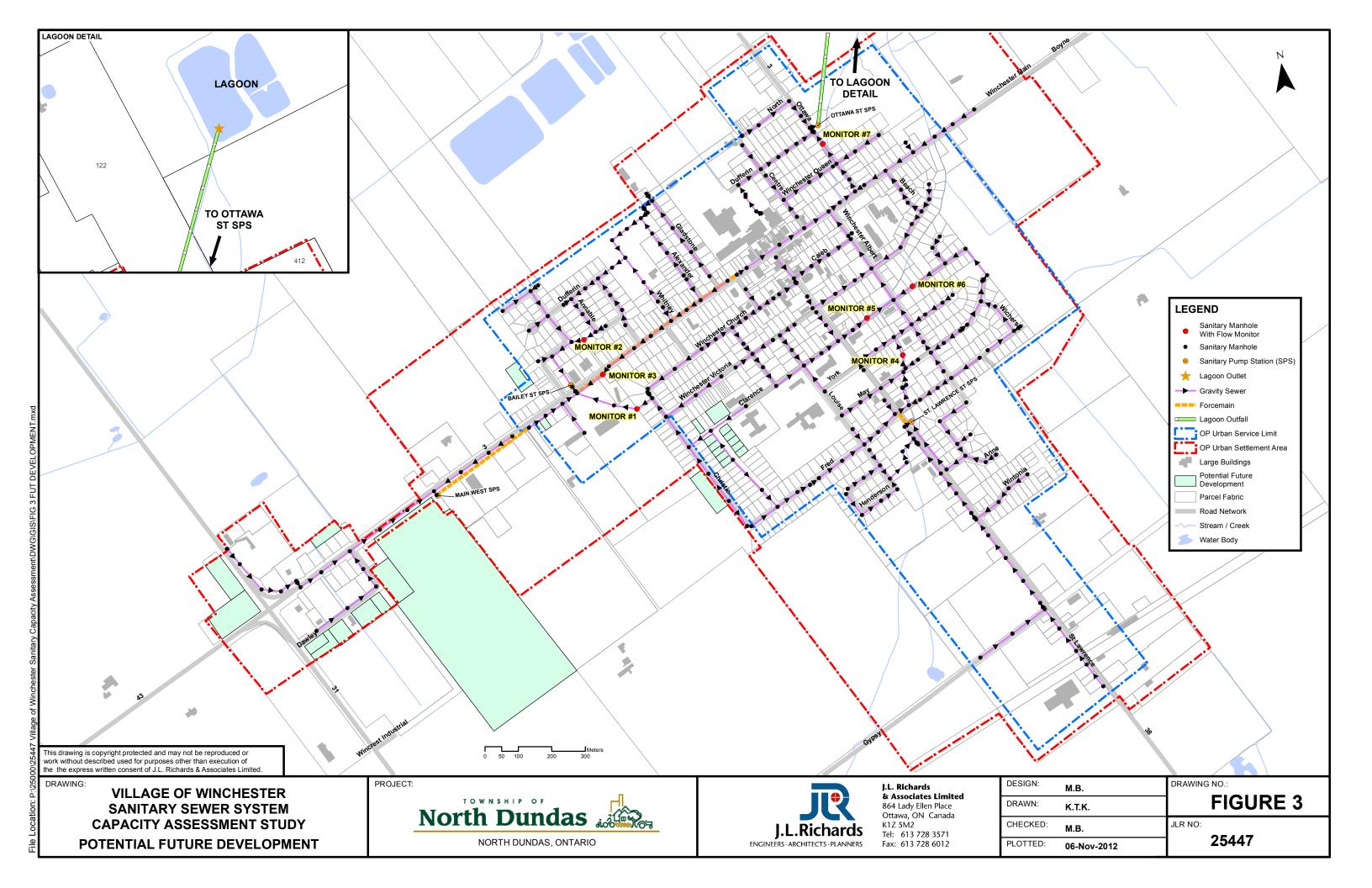
The Objectives of the investigation were to:

- Establish theoretical conveyance capacities of the wastewater collection system based on available as-constructed drawings (i.e., not field surveyed information);
- Develop modelling parameters based on flow monitoring data;
- Evaluate theoretical conveyance capacities under existing conditions; and
- Evaluate theoretical conveyance capacities under future development conditions (the future development condition is based on planned intensification mainly focused on the west side of the Village, namely the Hyde Park development).

The objective of this Report is to summarize the results of the work completed to date.

2.0 STUDY AREA DESCRIPTION


2.1 Existing Study Area


The existing Winchester wastewater collection system consists of gravity pipes and forcemains totalling approximately 20 kilometres in length and approximately 250 maintenance holes. The system includes a wastewater treatment lagoon, four (4) pumping stations (one main station and three sub-area stations) and a 400 mm diameter, 1.2 km long forcemain which discharges into the lagoon for treatment. Refer to Figure 2 for an overview of the existing wastewater collection system.

A number of institutional, commercial and industrial (ICI) developments were identified as potential high sewage generators. It was assumed that historically high water consumers would also generate sewage at a similar high rate. The Village provided two (2) years of total annual water consumption data for the highest water uses (refer to Appendix 'A' for correspondence). An average daily sewage rate was developed for the top four (4) high water users and included in the model. The four highest water consumers were the Winchester General Hospital, Parmalat Canada located at 694 St. Lawrence Street (the Parmalat facility located at 490 Gordon Street was not included in the model because it discharges to a private lagoon system), Dundas Manor Nursing Home and Tim Hortons.

2.2 Potential Future Development Areas

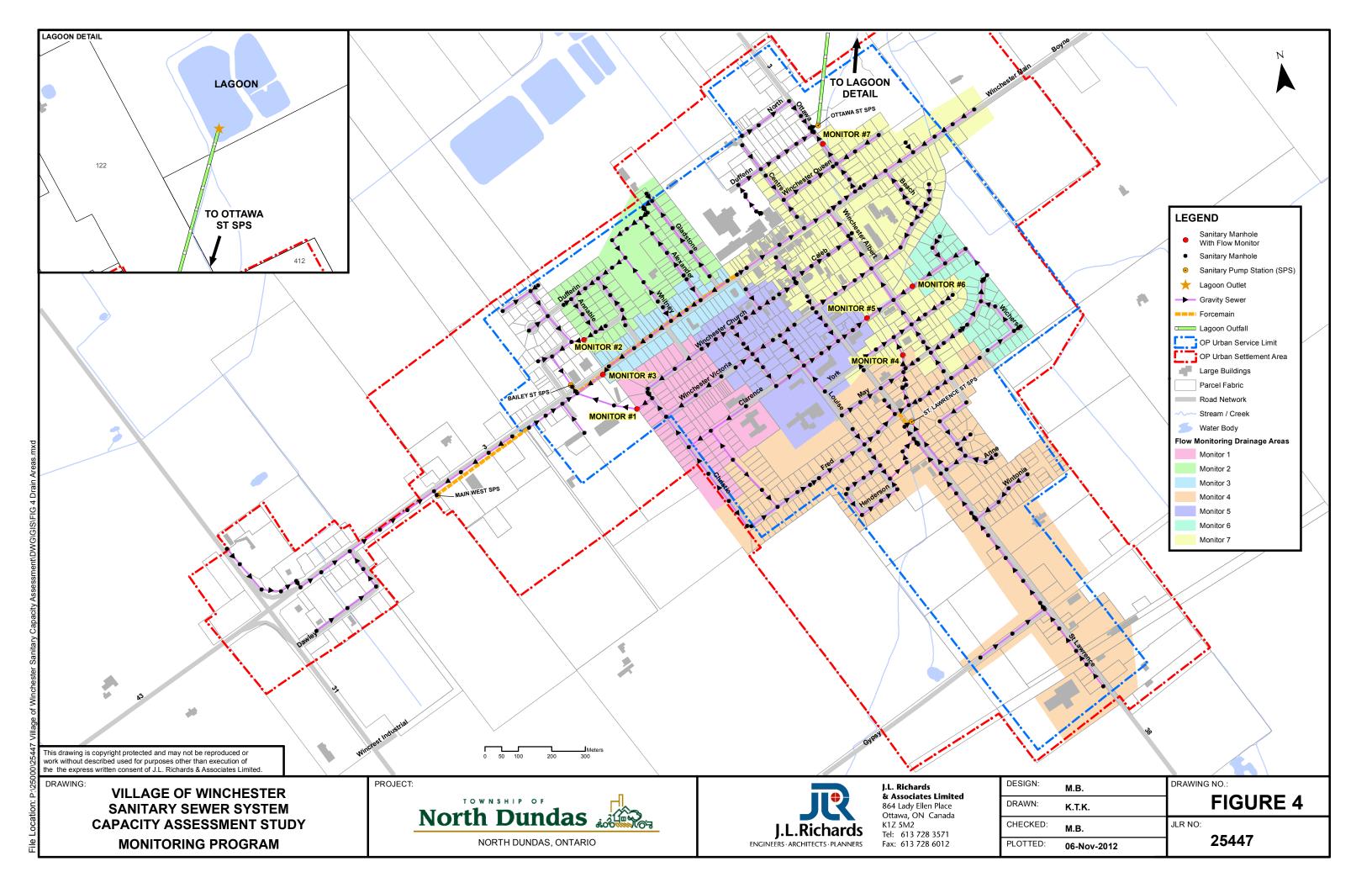
Potential future development areas were forecasted in close consultation with the Village and are focused in the West Service area. A revised JLR memorandum complete with Village comments dated September 27, 2012 formed the basis of anticipated future development projects to be included in the hydraulic model (refer to Appendix 'B' for a copy of the memo). In addition, the proposed 16.8 hectare Hyde Park development located along Main Street West approximately 400 m east of the intersection of Country Roads Nos. 43 and 31 was also included and evaluated in the hydraulic model (refer to Figure 3 for an overview of future development of 1,621 was obtained from the sanitary sewer design sheet contained in the September 26, 2012 Servicing Brief for this development (refer to Appendix 'C').

3.0 FLOW MONITORING PROGRAM (2012)

3.1 Description

Flowmetrix conducted a 6-week flow monitoring program between April 26 and June 6, 2012 in the Village in order to measure instantaneous sewage flows throughout the sanitary sewer system. Seven (7) flow monitoring locations were strategically selected in order to capture the majority of sewage flows conveyed to the Village's Lagoon. Each flow monitor measured flow from different types of drainage areas throughout the system, with the exception of Monitor No. 7, which monitored flows from the entire service area less a few blocks north of its location. Refer to Figure 4 for a map of flow monitoring locations and their respective drainage areas.

3.2 Data Evaluation


The flow monitoring devices were installed in manholes (refer to Figure 4 for locations) and programmed to record instantaneous flows every five (5) minutes. The data recorded over this period was analyzed and used to:

- Develop Average Daily Dry Weather Flow (ADDWF) Hydrographs;
- Estimate baseline infiltration;
- Estimate per capita flow rates; and
- Assess wet weather response.

The flow monitoring data was also used to develop system wide sewage flow parameters and peaking factors that reasonably approximate the measured flows at each of the flow monitoring locations.

Average Daily Dry Weather Flow (ADDWF) Hydrographs

The ADDWF hydrographs were developed for each flow monitoring location by averaging dry weather days that occurred during the flow monitoring period and that did not appear to be influenced by rainfall events. ADDWF hydrographs were produced using data from a minimum of four (4) separate days by averaging the instantaneous flow recorded at each five (5) minute intervals over the 24 hour period of the selected dry weather days (refer to Appendix 'D' for ADDWF Hydrographs). Once developed, the ADDWF was calculated as the average flow of the ADDWF hydrograph at each flow monitoring location. Table 1 summarizes the resulting ADDWF hydrographs calculated at each flow monitoring location.

Location	ADDWF (L/s)	Peak Flow (L/s)	Peaking Factor
Monitor No. 1	0.3	1.1	3.5
Monitor No. 2	0.4	0.8	1.8
Monitor No. 3	0.3	0.7	2.1
Monitor No. 4	2.9	9.4	3.2
Monitor No. 5	2.7	5.7	2.1
Monitor No. 6	0.8	1.1	1.4
Monitor No. 7	16.5	23.6	1.4

Table 1: AD	DWF Hydrograph	Summary
-------------	----------------	---------

The ADDWF hydrographs that were developed generally depict a diurnal pattern common for residential areas with higher flows recorded during the morning and evening, lower flows during midday, and the lowest flows occurring overnight. Peaking factors were developed at each location by dividing the highest measured flow of each ADDWF hydrograph by the calculated ADDWF (refer to Table 1). Per capita flow rates and peaking factors used in the hydraulic model were developed based on the data obtained by Flow Monitor No. 7, since it was located just upstream of the Ottawa Street Pumping Station and captured a majority of the collection system. This flow monitor was deemed to provide a reasonable approximation of the simulated wastewater flows to illustrate high flow periods. The overnight period generated the lowest flows (i.e., most activity ceases overnight) and, as such was assumed to yield a reasonable approximation of non-rainfall induced baseline infiltration rates.

The Village has a number of sewage pumping stations located throughout the wastewater collection system, and it is worth noting that the measured flows at Flow Monitor No. 4, that was located downstream of the St. Lawrence Street Pumping Station, did show evidence of cyclic peaks in the hydrograph that would be attributed to regular pumping cycles.

Non-Rainfall Induced Baseline Infiltration

Non-rainfall induced baseline infiltration is generally a function of the groundwater level and sewer integrity. Given that there would still be some sewage generation during the overnight period, the non-rainfall induced baseline infiltration was estimated to be eighty-five percent (85%) of the average ADDWF (typically occurs between 1:30 a.m. and 4:30 a.m.). Eighty-five percent is a typical value used for residential areas to determine the non-rainfall induced baseline infiltration rate. This value assumes that fifteen percent (15%) of the observed overnight flows can be attributed to actual wastewater activities.

The drainage area tributary to each flow monitoring location was determined in hectares (ha) and used to calculate an area based infiltration rate (L/s/ha) using the non-rainfall induced baseline infiltration computed for each area. Refer to Table 2 summarizing the baseline infiltration rates that were determined for each flow monitoring location (refer to Appendix 'D' for Baseline Infiltration rates assigned in the model).

Location	Average Low ADDWF (L/s)	Baseline Infiltration (L/s)	Area (ha)	Infiltration Rate (L/s/ha)
Monitor No. 1	0.07	0.06	12.0	0.005
Monitor No. 2	0.33	0.28	12.3	0.023
Monitor No. 3	0.21	0.18	5.6	0.031
Monitor No. 4	2.31	1.96	49.3	0.039
Monitor No. 5	1.66	1.41	14.3	0.098
Monitor No. 6	0.68	0.58	6.6	0.087
Monitor No. 7	12.36	10.51	134.2	0.078

 Table 2: Non-Rainfall Induced Baseline Infiltration Summary

A non-rainfall induced baseline infiltration rate of 0.08 L/s/ha was included in the model based data obtained by Flow Monitor No. 7 since it was located upstream of the Ottawa Street Pumping Station and captured a majority of the collection system.

Per Capita Flow Rate

The per capita flow rate represents the amount of residential wastewater generated by the current population. The total number of units located in the drainage area tributary to each flow monitor was estimated by counting the number of exiting units. It should be noted that apartments and multi-unit buildings were considered as one unit. These values were then multiplied by a unit density of 2.6 people/unit as provided by the Township.

The per capita flow rate used in the wastewater model was also developed by firstly accounting for the sewage generated by the top four (4) highest water users. The Township provided the 2010 and 2011 annual water consumption for these high water users. It was assumed that there were no water losses and, therefore, the wastewater production for these high water users was equal to the total water usage. The per capita flow rate was calculated by subtracting the non-rainfall baseline infiltration and the wastewater production from the high water users from the ADDWF and then dividing the resulting value by the population located within the flow monitoring drainage area. The following table summarizes the per capita flow rates that were developed for each flow monitoring location.

Location	Population	ADDWF – Infiltration (L/s)*	Per Capita Rate (L/cap/day)
Monitor No. 1	179	0.26	125
Monitor No. 2	177	0.16	80
Monitor No. 3	112	0.14	107
Monitor No. 4	484	0.48	85
Monitor No. 5	182	0.56	268
Monitor No. 6	143	0.23	137
Monitor No. 7	2096	4.44	183

Table 3:	Per Cap	ita Flow Rate	Summarv
1 4810 01	. 0. 0up		e anna y

*Note: Excludes wastewater production from high water users.

Similar to the analyses completed for the ADDWF and the baseline infiltration, the per capita flow rate used in the model was developed based on the data obtained by Flow Monitor No. 7 since it was located upstream of the Ottawa Street Pumping Station and captured a majority of the collection system. It was deemed to provide a better representation of sewage generation for the entire collection system. To be conservative, a rounded per capita flow rate of 200 L/cap/day was applied in the model. Refer to Appendix 'D' for a summary of all sewage demands assigned in the model.

Wet Weather Response

During rain events sanitary sewers typically experience an increase in flows due to wet weather inflows that can occur through the various direct connections. As part of the flow monitoring analysis, rain events that occurred over the course of the flow monitoring period were compared to measured rain events from a local rain gauge. Rain gauge data was collected at the Chesterville Dam, located approximately 10 km east of the Village, and was provided courtesy of the South Nation Conservation Authority. The rain data was then used to analyze the response of the wastewater collection system during the monitoring period to wet weather events. Wet weather related extraneous flow hydrographs were developed by subtracting the ADDWF hydrographs from the total flow monitoring hydrographs. All monitoring stations did not show strong, quick responses to rainfall events that are typically indicative of direct inflow to the system. This could be a result of the early snowmelt in the Spring of 2012 that was not capture by the monitoring program or the region wide drought (Level 1 low water conditions within the South Nation Conservation region) as noted by OCWA during a June 7th, 2012 meeting.

Average wet weather extraneous flow rates and peaking factors were developed from the wet weather extraneous flow hydrographs. Three marked increases in wastewater flows were noted to coincide with rainfall events. The area under the wet weather extraneous flow hydrographs represents the total volume of extraneous wastewater flow that was conveyed by the sewers. Dividing this total volume by the time for the sewers to convey the increased flow yielded an average wet weather extraneous flow rate for each event. The wet weather peaking factor was calculated by dividing the peak flow from the wet weather extraneous flow hydrographs by the average wet weather extraneous flow rate. Three wet weather extraneous flow rates and peaking factors (i.e., one for each of the three extraneous flow responses in the Spring 2012) were calculated at each flow monitoring location. The following table summarizes the average of the three wet weather flow rates and peaking factors that were calculated at each flow monitoring period (refer to Appendix 'D' for a table summarizing the three rain events at each flow monitor).

Location	Average Wet Weather Extraneous Flow (L/s)	Wet Weather Extraneous Flow Rate (L/s/ha)	Extraneous Peak Wet Weather Flow (L/s)	Extraneous Wet Weather Peaking Factor
Monitor No. 1	0.10	0.008	1.79	17.9
Monitor No. 2	0.16	0.013	0.68	4.2
Monitor No. 3	0.26	0.046	3.81	14.7
Monitor No. 4	1.97	0.040	15.06	7.7
Monitor No. 5	0.90	0.063	7.81	8.7
Monitor No. 6	0.43	0.065	0.98	2.3
Monitor No. 7	4.57	0.034	17.99	3.9

Table 4: Wet Weather Influence Summary

It should be noted that Monitor Nos. 1 and 3 exhibit larger peaking factors relative to the other monitoring locations. These peaking factors may indeed be representative of the specific locations and timeframes; however, given their relatively small drainage areas (12 and 5.6 ha, respectively) and the limited storm events actually monitored during the time they were installed, the decision was made to not include these peaking factors in the development of the model. Similar to the development of modelling parameters for baseline infiltration and per capita sewage rates, data from Flow Monitor No. 7 was used to develop the wet weather extraneous flow rate model input. To be conservative, a rounded wet weather extraneous flow rate of 0.035 L/s/ha and peaking factor of 4 were applied in the model (refer to Appendix 'D' for wet weather flow rates applied in the model).

Adding the peaked wet weather flow rate $(0.035 \times 4 = 0.140 \text{ L/s/ha})$ and baseline infiltration rate (0.08 L/s/ha) yields a total extraneous flow rate of 0.22 L/s/ha as an input to the model. This value is somewhat lower than the standard infiltration guideline of 0.28 L/s/ha outlined in the MOE Sewer Design Guidelines, which is typically used as part of the peak extraneous flow component for the design of new sewers, irrespective of land usage, sewer construction or soil type, however, is in a comparable order of magnitude.

4.0 SANITARY SEWER MODEL DEVELOPMENT

The SewerCAD[®] hydraulic model was constructed using shapefiles generated from the GIS data provided by the Township of North Dundas. The shapefiles were imported into the software along with MH top of grate elevations and sewer invert elevations obtained from asconstructed drawings provided by OCWA. The four pumping stations included in the model were Main Street West, Bailey Street, St. Lawrence Street and Ottawa Street. Pump curves for the pumps contained in each pumping station were provided by OCWA and included in the model (refer to Appendix 'E' for pump curves). This information created the "skeleton" of the sewer model onto which wastewater flows could be applied.

The wastewater flow parameters utilized in the SewerCAD[®] model were developed based on the analysis of the flow monitoring data. As outlined previously, the flow monitoring data was dissected into five components; ADDWF per capita, dry weather peaking factor, non-rainfall induced baseline infiltration rate, wet weather extraneous flow rate and a wet weather peaking factor. The following table summarizes the values developed for each parameter that were incorporated into the model.

Demand Scenario Simulation	Flow
ADDWF (L/cap/d)	200
Dry Weather Peaking Factor	1.4
Baseline Infiltration (L/s/ha)	0.08
Wet Weather Extraneous Flow Rate (L/s/ha)	0.035
Wet Weather Peaking Factor	4
Total Extraneous Flow (L/s/ha)	0.22

For comparison purposes, the ADDWF rate was compared to recorded water consumption during the sewer flow monitoring period between April and June. After removing the high water

users from the data, the water consumption records yielded a rate of approximately 240 L/cap/day (refer to Appendix 'A' for water consumption correspondences). The ADDWF value therefore appears fairly representative of the operating conditions recorded during the flow monitoring period.

The ADDWF is noted to be somewhat lower than the typical MOE Sewage Design Guideline that recommends domestic flows range between 225 and 450 L/cap/day. While the flow monitoring data and water meter records appear to corroborate the ADDWF used in the model, it is still recommended that typical MOE sewage parameters be considered for any new development or future capacity expansions to ensure an appropriate level of conservatism.

5.0 FLOW MODELLING OF EXISTING CONDITIONS

The SewerCAD[®] model was used to evaluate the existing wastewater collection system during peak wet weather flows under pumped conditions. Although SewerCAD® is able to simulate flows generated by a sewage pumping station, the model conservatively applies the simulated pumping rate to all sewer sections located downstream of the pumping station as a "plug" flow. Typically, pumped flows attenuate as they are conveyed through the collection system, however sewer sections located immediately downstream of a pumping station forcemain are expected to be subject to some increase in flow during pump operation as seen in Monitor No. 4 located downstream of the St. Lawrence Street PS. Based on the pump curves that were input into the model, the model simulated the following pumped flow rates:

Pump Station	Simulated Inflow (L/s)	Simulated Pump Flow (L/s)	MOE Certificate of Approval (L/s)	OCWA Draw Down Test (L/s)
Main Street West	5.1	5.1	3.5	2.4
Bailey Street	16.0	28.9	31.4	29.2
St. Lawrence Street	8.9	26.5	-	21.2
Ottawa Street	78.9	2 x 50 *	3 x 90 *	-

Table 6:	Peak Wet W	leather Pumped	Sewer Flows
----------	------------	----------------	-------------

* Note: The simulated pump flow was based on two VFD pumps each operating at 50 L/s. The MOE Certificate of Approval states three pumps and each rated for 90 L/s.

A review of the model results for the linear infrastructure indicates that the simulated peak wet weather flow along two (2) sections of sewer exceeded their theoretical conveyance capacity and are listed in the following table (refer to Appendix 'F' for complete simulation results).

Sewer Section	Location	Capacity (L/s)	Simulated Flow (L/s)	Percent of Capacity (%)
182	Easement b/w York & May	25.56	30.75	120.3
186	Easement b/w York & May	28.08	30.07	107.1

Table 7: Peak Wet Weather Sewer Flows and Capacities

The ratio of simulated flow to theoretical conveyance capacity of the next nine highest sewer sections ranged from 95% to 57% (refer to Appendix 'F' for complete simulation results). The capacity of reverse sloped pipes was not included in the modelled peak flow vs. theoretical conveyance capacity comparison since flow through these sewer sections is governed by the hydraulic grade line (HGL). Based on a review of the as-constructed drawings only sewer section 451, the inlet to the Main Street West PS was identified as having a reverse slope, which could indicate inaccurate as-constructed data.

6.0 FLOW MODELLING OF POTENTIAL FUTURE CONDITIONS

The SewerCAD[®] model was used to evaluate the impact that future development in the West Service Area would have on the existing wastewater collection system during peak wet weather flows under pumped conditions. Revised pump curves for the Main Street West and Bailey Street Pumping Stations were simulated in the model, in order to convey the future wastewater flows to the downstream gravity sewers. Based on the revised pump curves, the model simulated the following inflow and pumped flow rates at each station:

Pump Station	Simulated Inflow (L/s)	Simulated Pump Flow (L/s)
Main Street West	36.9	40.4
Bailey Street	52.7	60.8
St. Lawrence Street	8.9	26.5
Ottawa Street	110.8	2 x 50 + 110 *

Table 8: Future Peak Wet Weather Pumped Sewer Flows

* Note: The simulated pump flow was based on two VFD pumps each operating at 50 L/s and one constant speed pump operating at 110 L/s.

A review of the model results for the linear infrastructure indicates that the simulated peak wet weather flow along nine (9) sewer sections exceeded their theoretical conveyance capacity and are listed in the following table (refer to Appendix 'G' for complete simulation results).

Sewer Section	Location	Capacity (L/s)	Simulated Flow (L/s)	Percent of Capacity (%)
45	Inlet to Bailey St. PS	20.18	47.90	237.4
47	Main St. West of Bailey	21.00	40.96	195.0
48	Main St. West of Bailey	21.95	40.74	185.7
96	Main St. West at Louise	35.80	60.89	170.1
46	Main St. West of Bailey	26.34	41.43	157.3
97	Main St. West at Louise	39.32	61.26	155.8
450	Main St. West at Hyde Park	26.25	35.42	135.0
182	Easement b/w York & May	25.56	30.75	120.3
186	Easement b/w York & May	28.08	30.07	107.1

 Table 9: Future Peak Wet Weather Sewer Flows and Capacities

The ratio of simulated flow to theoretical conveyance capacity of the next ten highest sewer sections ranged from 98% to 54% (refer to Appendix 'G' for complete simulation results).

7.0 DISCUSSION

Existing Conditions

Based on the hydraulic modelling results, under existing conditions the overall wastewater collection system appears to have sufficient capacity to convey the estimated peak sewage flows developed from the flow monitoring data. The simulated results indicated that two (2) sewer sections (182 and 186) located along the easement between York Street and May Street are flowing beyond their theoretical conveyance capacity; however, it is worth noting that these sewer section are located downstream of the St. Lawrence Street PS and are likely subject to conservatively applied pumped flows simulated in the model.

The four pumping stations appear to have adequate pumping capacity to accommodate the simulated wastewater inflows, with the exception of the Main Street West PS. The simulation result for the Main Street West PS appears to indicate that the station is operating at or near its full capacity. In addition, the simulated pump flow of 5.1 L/s exceeds both the MOE Certificate of Approval rating of 3.5 L/s and the OCWA draw down test result of 2.4 L/s. Draw down test

results were also provided by OCWA for St. Lawrence St. PS and Bailey St. PS and closely matched the simulated results (refer to Table 6).

Future Conditions

Based on hydraulic modelling results under future development conditions, infrastructure located on the west side of the Village is unable to accommodate the wastewater flows generated by the proposed build-out development. The simulated results indicate that nine (9) sewer sections exceed their theoretical conveyance capacity under this scenario. It is worth noting that the majority of these sewers are located along Main Street West between the proposed Hyde Park development and Mill Street. Depending on the ultimate servicing solution of the Hyde Park development, it is likely that the majority of the identified sewer sections will require capacity upgrades. In addition, pumping stations that service the west side of the Village will also require upgrades.

The model assumed that sewage flows generated from the Hyde Park development discharged directly to the gravity sewer section fronting the site (i.e., sewer 450). Therefore, three (3) pumping stations are required to convey wastewater flows from the west side of the Village ultimately to the Lagoon (i.e., Main Street West, Bailey Street and ultimately the Ottawa Street PS). Pump curves at these stations were upgraded in the model for the purposed of conveying the estimated peak wastewater flows. In addition to the simulated pump capacity increases, it is likely that upgrades to forcemains and wet wells would also be required. The scope of potential system upgrades is highly dependent on the ultimate servicing solution proposed for the Hyde Park development (e.g. a new pumping station and forcemain could be installed to bypass certain sewer section).

8.0 **RECOMMENDATIONS**

The development of a hydraulic sewer model for the Village of Winchester has been a very useful exercise and will allow for the simulation of many different potential scenarios. The Township is now in a position to readily assess wastewater flow capacities in the existing network and to forecast the effects that proposed development could have on downstream infrastructure. The model was developed based on the current available GIS and asconstructed information. Analysis of actual flow monitoring data facilitated the development of wastewater parameters that are reflective of actual field conditions. Moving forward, additional flow monitoring could be conducted in early Spring to capture wastewater flows more representative of spring runoff conditions and further refine model input parameter to increase accuracy. Also, various future development servicing solutions can easily be evaluated in the model in order to define the scope and timing of wastewater system upgrades to accommodate future development areas. As with any model, its effectiveness in simulating actual conditions

depend on the information used to create the model. It is our experience that new and higher quality information typically becomes available over time. In this regard, it will be important to periodically update the Model as this information becomes available.

Based on the work completed as part of this assignment, it is recommended that:

- 1. Sewers shown to be operating at capacity greater than 60% full under existing conditions and future conditions be checked to confirm that the physical data utilized in the model is accurate (i.e., survey sewer sizes and inverts).
- 2. Additional flow monitoring be considered for late Winter/Spring 2013 at strategic locations based on the work completed to date.
- 3. Additional draw down tests be undertaken to confirm existing pump station capacities as some discrepancies have been noted between published and field data.
- 4. A Master Servicing Plan be considered for both water and wastewater infrastructure capacity expansion and renewal in the long term.
- 5. All new development areas and future capacity expansions of existing infrastructure should continue to be designed using typical MOE sewage design values.
- 6. Any necessary short term capacity expansions be reviewed in consideration of planned development.
- 7. The SewerCAD[®] model be utilized when needed and updated with new and current information as it becomes available approximately on an annual basis.

Prepared by:

Reviewed by:

Mark Buchanan, P.Eng.

Brian Hein, P.Eng.

MB/BH:jd

APPENDIX 'A'

Annual Consumption Data – High Water Users

Mark Buchanan - Winchester Sanitary Sewer System Capacity Assessment - water metering records

From: To:	"Angela Rutley" <arutley@northdundas.com> "'Sarah Gore'" <sgore@jlrichards.ca>, "'Blair Henderson'" <bhenderson@oc< th=""></bhenderson@oc<></sgore@jlrichards.ca></arutley@northdundas.com>
Date:	3/30/2012 11:40 AM
Subject:	Winchester Sanitary Sewer System Capacity Assessment - water metering records
CC:	"'Mark Buchanan'" <mbuchanan@jlrichards.ca></mbuchanan@jlrichards.ca>

As requested, here is the water consumption data for our top users, excluding Parmalat, 490 Gordon Street that has its own lagoon system.

	2010	2011
Winchester & District Memorial Hospital, 550 Louise Street	21,757 m ³	23,389 m ³
Parmalat Canada, 694 St. Lawrence Street	12,062 m ³	19,186 m ³
Dundas Manor Nursing Home, 533 Clarence Street	11,041 m ³	9,951 m ³
Tim Hortons, 12001 County Rd 3	4,344 m ³	4,738 m ³
Cornwall & Area Housing Apt. Bldg., 517 Albert St.	2,683 m ³	3,002 m ³
Winchester Nonprofit Apt. Bldg., 510 Beach St.	2,502 m ³	2,343 m ³
Winchester Community Centre, 577 Main Street	2,090 m ³	2,787 m ³

If you need anything further, let me know.

Angela Rutley Deputy CAO Township of North Dundas >>> "Mary Lynn Plummer" <MPlummer@northdundas.com> 11/23/2012 11:09 AM >>> Good morning Brian,

It was a pleasure to meet you yesterday! Please see below: Consumption for April, May & June as per our conversation. If you have any questions, please contact me and I will be more than happy to assist!

Have a great weekend.

Mary Lynn Plummer

Water/Sewer Assistant Manager Township of North Dundas Ph: 613-774-2105 ext:227 Fax: 613-774-5699 www.northdundas.com

From: Mary Lynn Plummer Sent: Friday, November 23, 2012 10:29 AM To: 'BHenderson@ocwa.com' Cc: 'Dave Markell' Subject: Consumption for April May & June

Here are my calculations: Quarterly Billing including finals : 49,090.70 cubic meters April May June Monthly billings: 81,439.98 cubic meters Sub Total :130,530.68 cubic meters Minus Parmalat , WDMH, Dundas Manor & Tim Horton's :- <u>76,104.38</u> cubic meters & Winchester Cheese Total 54,426.30 cubic meters

Location	April	May	June
Parmalat 490 Gordon	20,267	22,728	14,073
Parmalat 490 Gordon	1,707	2,052	2,141
Dundas Manor	1,183	1,128.20	1,360.80
WDMH	1,765.70	2,455.34	3,066.34
Winchester Cheese	241	547	449
Tim Horton's			940
Total Consumption	25,163.70	28,910.54	22,030.14

Hope this is what you are looking for? Cheerio,

Mary Lynn Plummer

Water/Sewer Assistant Manager Township of North Dundas Ph: 613-774-2105 ext:227 Fax: 613-774-5699 www.northdundas.com

APPENDIX 'B'

Memorandum – West Service Area Future Development

SEPT 27,2012 C.Fol

MEMORANDUM

I.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

PAGE 1 OF 2

TO:	Calvin Pol, BES, MCIP, RPP Director of Planning, Building and Enforcement Township of North Dundas	DATE: JOB NO.:	June 28, 2012 REVISED July 26, 2012 (noted in red) 25447
		000 110	Lotti
FROM:	Sarah Gore, P.Eng.	CC:	Angela Rutley, Township of North Dundas
RE:	Village of Winchester Sanitary Sewer Capacity Study West Service Area Development Projections		Blair Henderson, Ontario Clean Water Agency Dave Markell, Ontario Clean Water Agency Mark Buchanan, P.Eng., J.L. Richards & Associates Limited Brian Hein, P.Eng., J.L. Richards & Associates Limited

INTRODUCTION

The purpose of this Memorandum is to establish proposed short-term (0 - 5 years) and long-term (5 - 20 years) population projections for the West Service Area of the Village of Winchester to serve as the basis for the Sanitary Sewer System Capacity Assessment Study.

POTENTIAL DEVELOPMENT STRATEGY

In order to assess the impacts of growth within the West Service Area on the sanitary collection and pumping infrastructure, spatial and land-use definitions of the proposed development areas are needed. The attached Proposed Boundaries - Winchester Map from the Comprehensive Settlement Area Boundary Study illustrates the current vacant lands and future development areas. In addition, based on the feedback received at the Project Meeting No. 2 held on June 7, 2012 and comments provided on July 18, 2012, we have prepared the following potential future development areas for review and comment (refer to the attached Figure for the noted development areas):

-			TO Ea	stern Enfince	my to m	v.'de	
_	Development Area	Description SP 1:1	# of Lots or Area	# of Units Connected to Existing System	Short-Term (0 - 5 years)	Long-Term (5 - 20 years)	
	1	Commercial Pioneer Gas Bar/Car Wash	1	0	\$ 1.2 1/see	0	
	2	Commercial	1	0	0	1	
(it >	> 3	Residential / Commercial	23	64 connect	ed 59 NIL	129	
	4	Future Development Employment District	2 ha (existing) 12 ha (possible)	1 <u>3commit</u>	0	0	
	5	Commercial Dean's Food Store	2	0	8.0	\$2	
	6	Residential Development	TED	SEE ADTTACHE	540	200	
REM	101/2 7	Future Development Area Residential	14 ha	Provide Density	TBD	TBD REM	ov
	8	Residential Development	\$12	0	612	0	A
	9	Residential Development	12	0	12 ×	012	
	10	Residential/Commercial Development	2	0	2 0	\$2	
	11	Residential Development	🕻 (semi's)	9 I Servi	46	0	
			4 house	5			

MEMORANDUM

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

PAGE 1 OF 2

TO:	TO: Calvin Pol, BES, MCIP, RPP Director of Planning, Building and Enforcement Township of North Dundas	DATE:	June 28, 2012 REVISED July 26, 2012 (noted in red)
		JOB NO.:	25447
FROM:	Sarah Gore, P.Eng.	CC:	Angela Rutley, Township of North Dundas
RE:	Village of Winchester Sanitary Sewer Capacity Study West Service Area Development Projections		Blair Henderson, Ontario Clean Water Agency Dave Markell, Ontario Clean Water Agency Mark Buchanan, P.Eng., J.L. Richards & Associates Limited Brian Hein, P.Eng., J.L. Richards & Associates Limited
INTRODU	JCTION		

The purpose of this Memorandum is to establish proposed short-term (0 - 5 years) and long-term (5 - 20 years) population projections for the West Service Area of the Village of Winchester to serve as the basis for the Sanitary Sewer System Capacity Assessment Study.

POTENTIAL DEVELOPMENT STRATEGY

In order to assess the impacts of growth within the West Service Area on the sanitary collection and pumping infrastructure, spatial and land-use definitions of the proposed development areas are needed. The attached Proposed Boundaries – Winchester Map from the Comprehensive Settlement Area Boundary Study illustrates the current vacant lands and future development areas. In addition, based on the feedback received at the Project Meeting No. 2 held on June 7, 2012 and comments provided on July 18, 2012, we have prepared the following potential future development areas for review and comment (refer to the attached Figure for the noted development areas):

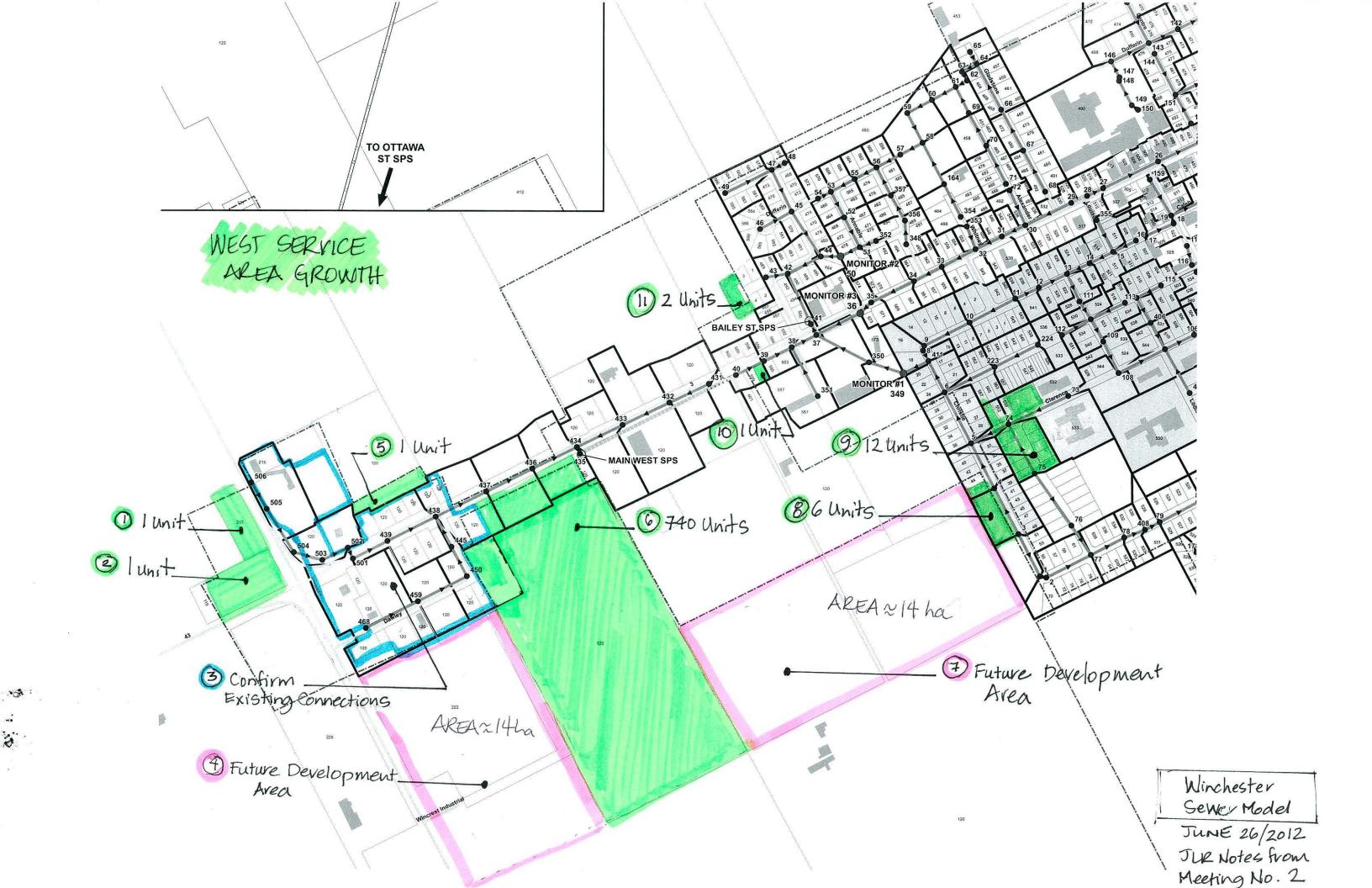
Development Area	Description	# of Lots or Area	# of Units Connected to Existing System	Short-Term (0 - 5 years)	Long-Term (5 - 20 years)
1	Commercial Pioneer Gas Bar/Car Wash	1	0	1	0
2	Commercial	1	0	0	1
3	Residential	23	6	5	12
4	Future Development Employment District	2 ha (existing) 12 ha (possible)	1	0	0
5	Commercial Dean's Food Store	1	0	1	0
6	Residential Development	740	0	540	200
7	Future Development Area Residential	14 ha	Provide Density	TBD	ŦBÐ
8	Residential Development	6	0	6	0
9	Residential Development	12	0	12	0
10	Residential/Commercial Development	2	0	2	0
11	Residential Development Semi Detached Units	2 (semi's)	0	4	0

PAGE 2 OF 2

As noted in the Table above, we require the Township to confirm the following:

- The proposed short-term (0 10 years) and long-term (10 20 years) planning periods are acceptable. An alternate scenario may be to consider short and long-term planning periods of (0 5 years) and (5 20 years), respectively. Use (0 5 years) and (5 20 years).
- Development Area No. 3: We understand that some residential units are currently connected to the sanitary sewer system, while other homes continue to operate private systems. In order to accurately depict the existing and future conditions in the hydraulic model, we require the number of homes currently connected to the sanitary system and an estimate of the short and long-term connections. As noted in the Table.
- Development Area No. 4: We had discussed this area not being included in the model at the Project Meeting. If the Township would like us to include this area as a commercial user in the long-term scenario, please advise. Note that adding 14 ha of commercial lands within the hydraulic model may significantly impact flows from the West Service Area. Use an equivalent of 2 Units.
- Development Area No. 6: As discussed at the Project Meeting, please provide an estimate of the short and longterm connections to be utilized within this model. To be confirmed at July 25, 2012 meeting.
- Development Area No. 7: We are assuming that this area will ultimately be a residential development area. Similarly as Development Area No. 4, please confirm whether this development area is to be included in the hydraulic model in the long-term scenario. If the Township elects to include this development within the hydraulic model, we would require an approximate unit density to determine the number of households within this growth area. Delete Development Area No. 7.

We understand that the Township is currently working towards updating background studies to support future Official Plan updates and acknowledge that the information may not be readily available. We currently have the existing hydraulic model constructed and will require this information at your earliest convenience to review impacts of development on the wastewater infrastructure and maintain the proposed project schedule.


If you have any questions or concerns, please do not hesitate to call.

Prepared by,

J.L. RICHARDS & ASSOCIATES LIMITED

auffore.

Sarah Gore, P.Eng.

APPENDIX 'C'

Hyde Park Servicing Brief

(613) 860-0923

FAX: (613) 258-0475

120064

September 26, 2012

Engineers

P.O. Box 189

Township of North Dundas 636 St. Lawrence Street, P.O. Box 489 Winchester, Ontario K0C 2K0

Kollaard Associates

210 Prescott Street, Unit 1

Kemptville, Ontario K0G 1J0

Attention: Mr. Calvin Pol

SERVICING BRIEF PROPOSED MIXED USE SUBDIVISION DEVELOPMENT WINCHESTER ONTARIO

Courtyard Development Inc has retained the services of Kollaard Associates Inc. (Kollaard) to prepare the servicing design and brief for the proposed mixed used subdivision development at the south side of Main Street West about 420 metres east of the intersection of County Road 43 and County Road 31 in the village of Winchester, Township of North Dundas, Ontario. The proposed Residential Development occupies a total area of about 16.8 hectares (42 acres). It is planned to construct the subdivision in three phases. Phase 1 will contain a total of 4 large buildings ranging in size from 3 to 4 storeys. The building use will vary from either completely residential occupancy to commercial/institutional occupancy on the first and or second storey and institutional/residential occupancy on the remaining storeys. The proposed development in Phase 2 is to consist of 2 large residential buildings and residential multi unit row house dwellings.

Phase 1 is composed of the following Building types:

- Type A 3-story mixed use (Residential and Commercial and Institutional)
- Type B 3-story mixed use (Residential and Commercial)
- Type C 3-story mixed use (Residential and Institutional)
- Type D 4-story single use (Residential)
- Type E 4-story single use (Residential)

Phase 2 is composed of the following Building types:

- Type E 4-story single use (Residential)
- Type F 4-story single use (Residential)
- Type G 1-story multi unit row house
- Type H 1-story multi unit row house

- 2 -

Phase 3 is composed of the following Building types:

- Type G 1-story multi unit row house
- Type H 1-story multi unit row house
- Type J 1-story multi unit row house

The development is to include underground services consisting of municipal water, sanitary sewer, and storm sewer.

This brief identifies the water and sanitary servicing requirements to accommodate the proposed development.

SANITARY SEWER CONNECTION

The sanitary flow requirements have been calculated per phase and are summarized on the attached sanitary sewer design sheet is attached.

The sanitary flow calculations for the proposed development are based on the City of Ottawa design parameters, Ontario Building Code, as well as site specific parameters:

Table -1	
Q = Average daily flow per capita	350 l/day per capita
Apartment/Condos/Hotel	2.0 pers. per unit
Res. Semi-detached and Row house Units	2.0 pers. per unit
Care units	1.6 pers. per unit
Commercial / Institutional	8.1 l/sqm
Additional Flow Doctor Office	250 l/day per practitioner
Infiltration	0.23 l/s per gross ha.

The life lease agreement that anyone acquiring a unit will have to sign stipulates that the maximum occupancy for any residential unit of any type is 2 persons.

Phase 1

Sanitary Flows:

Detailed Calculations are included on the attached sanitary sewer design sheet.

Residential Capacity Requirement

Number of persons from sanitary sewer design calculation sheet in Phase 1: 1291 occupants and 8 practitioners.

- 3 -

Peaking Factor: Residential Peak Factor: 4.0

Average daily Flow: 873 x 350 L/c/day + 8 x 250 L/c/day = 3.56 L/s

Peak Residential Sanitary Flow: 3.56 L/s x 4.0 = 14.24 L/s

Commercial / Institutional Capacity Requirement

Based on expected commercial and institutional occupancy the sanitary demand was calculated as follows : 75 (Litres/person/day)/ 9.3 (m^2 /person) = 8.1 L/ m^2 /day Commercial / Institutional Peak Factor: 1.5

Average daily flow: $6671 \text{ m}^2 \times 8.1 \text{ L/m}^2/\text{day} = 54.04 \text{ m}^3/\text{day} = 0.63 \text{ L/s}$ Peak sanitary flow (factor 1.5): $0.63 \text{ L/s} \times 1.5 = 0.94 \text{ L/s}$

Extraneous Flows:

Infiltration Allowance: 0.23 l/s/effective gross ha Gross Area Expected to contribute to Sanitary Sewer = 3.45 ha.

Peak extraneous flows = 3.45 x 0.23 = 0.79 L/s

Therefore:

Phase 1 Total Average Sanitary Capacity Requirement = 5.56 + 0.63 + 0.79 = 4.98 L/s Phase 1 Total Peak Sanitary Capacity Requirement = 14.24 + 0.94 + 0.79 = 15.67 L/s

Phase 2

Sanitary Flows:

Detailed Calculations are included on the attached sanitary sewer design sheet.

Residential Capacity Requirement

Number of persons from sanitary sewer design calculation sheet in Phase 2: 476 occupants.

Peaking Factor: Residential Peak Factor: 4.0

Kollaard Associates

Septmber 26, 2012

Average daily Flow: 476 x 350 L/c/day = 1.93 L/s

Peak Residential Sanitary Flow: 1.93 L/s x 4.0 = 7.72 L/s

Commercial / Institutional Capacity Requirement = 0

Extraneous Flows:

Infiltration Allowance: 0.23 l/s/effective gross ha Gross Area Expected to contribute to Sanitary Sewer = 3.40 ha.

Peak extraneous flows = 3.40 x 0.23 = 0.78L/s

Therefore:

Phase 2 Total Average Sanitary Capacity Requirement = 1.93 + 0.0 + 0.78 = 2.71L/s Phase 2 Total Peak Sanitary Capacity Requirement = 7.72 + 0.0 + 0.78 = 8.49 L/s

Sewage discharges is residential in type and in compliance with the Winchester Use By-law. The sewer will be tied to the municipal sewer system.

Phase 3

Sanitary Flows:

Detailed Calculations are included on the attached sanitary sewer design sheet.

Residential Capacity Requirement

Number of persons from sanitary sewer design calculation sheet in Phase 3: 264 occupants.

Peaking Factor: Residential Peak Factor: 4.0

Average daily Flow: 264 x 350 L/c/day = 1.07 L/s

Peak Residential Sanitary Flow: 1.07 L/s x 4.0 = 4.28 L/s

Commercial / Institutional Capacity Requirement = 0

Extraneous Flows:

- 5 -

Infiltration Allowance: 0.23 l/s/effective gross ha Gross Area Expected to contribute to Sanitary Sewer = 2.3 ha.

Peak extraneous flows = 5.20 x 0.23 = 1.2 L/s

Therefore:

Phase 3 Total Average Sanitary Capacity Requirement = 1.07 + 0.0 + 1.20 = 2.27 L/s Phase 3 Total Peak Sanitary Capacity Requirement = 4.28 + 0.0 + 1.20 = 5.47 L/s

Total Sanitary Requirement

Total Average Sanitary Capacity Requirement = 9.96 L/s Total Peak Sanitary Capacity Requirement = 29.94 L/s

Sewage discharges is residential in type and in compliance with the Winchester Use By-law. The sewer will be tied to the municipal sewer system.

WATER REQUIREMENTS

From the sanitary sewer calculations above, the residential occupancy of the proposed subdivision development is 1621 persons. It is assumed that the water demand for the commercial / institutional usage will match the sanitary demand for the commercial / institutional use.

The residential water demand is estimated based on the City of Ottawa Watermain Guidelines as follows:

Average daily demand of 350 L/c/day gives = 567.4 m^3 /day or 6.57 L/s

Maximum daily demand (factor of 2.5) is $6.57 \text{ L/s} \times 2.5 = 16.43 \text{ L/s}$

Peak hourly demand (factor of 2.2) = 16.43 L/s x 2.2 = 36.15 L/s

The commercial / Institutional Demand is as follows

Total estimated commercial / institutional building area is 3700 m².

From the sewer design sheet, the estimated water demand is 8.1 $L/m^2/day$.

Commercial average daily demand = $3700 \text{ m}^2 \times 8.1 \text{ L/m}^2/\text{day} = 0.35 \text{ L/s or } 29.97 \text{ m}^3/\text{day}.$

Commercial maximum daily demand (factor 1.5) = 0.63 L/s x 1.5 = 0.95 L/s

- 6 -

Commercial maximum hourly demand (factor 1.8) = 0.95 L/s x 1.8 = 1.71 L/s

Therefore, the total water demand is

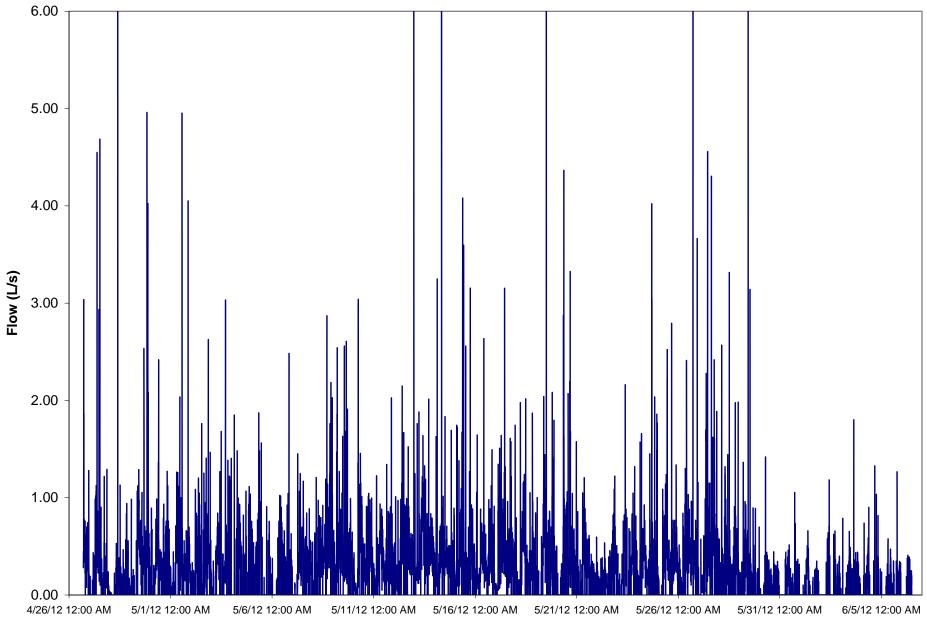
Total average daily demand = 7.20 L/s Total maximum daily demand = 17.38 L/s Total maximum hourly demand = 37.86 L/s

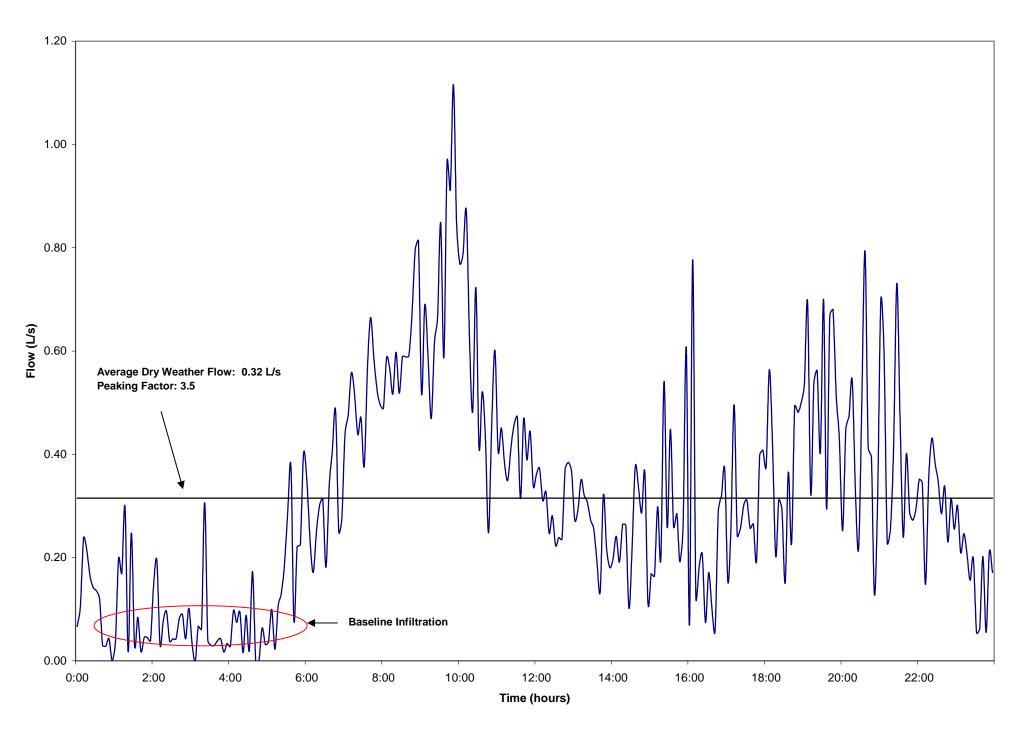
We trust that the information provided is sufficient for your present requirements. Do not hesitate to contact our office should you have additional questions or concerns.

Sincerely, KOLLAARD ASSOCIATES INC.,

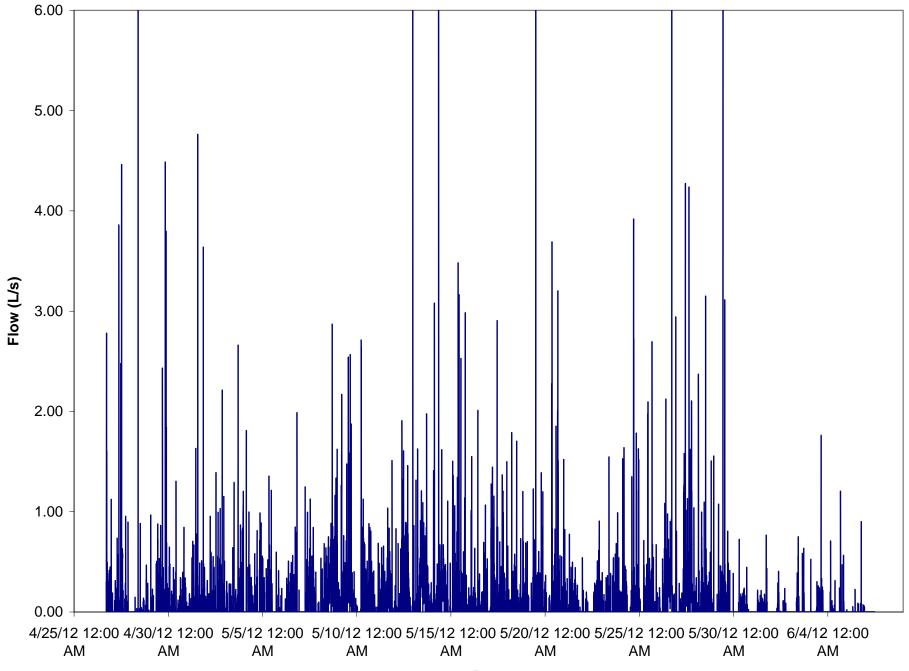
fle 20

Steven deWit, P.Eng.

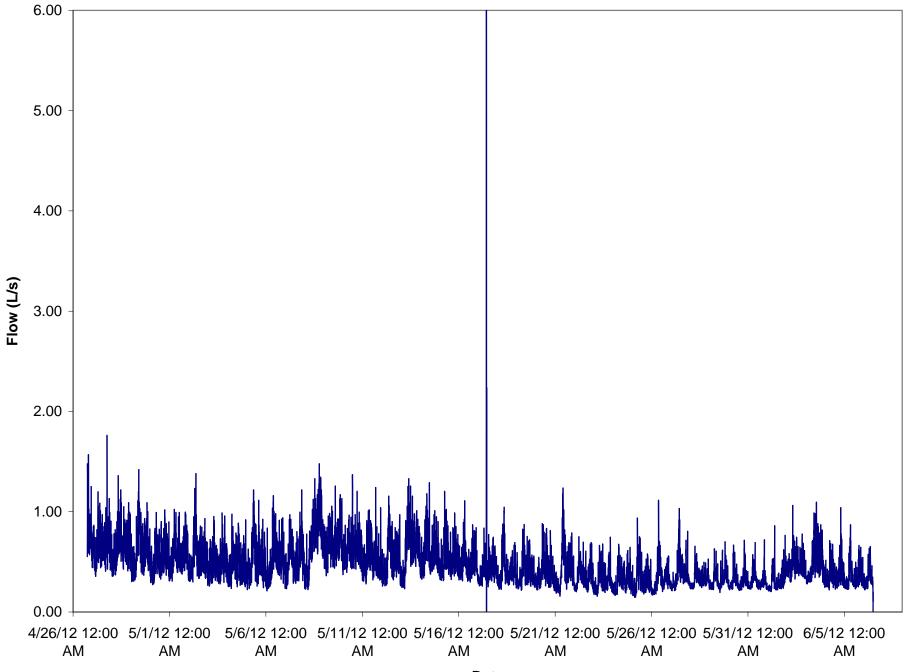

Sanitary Sewer Design Calculations HYDE PARK- WINCHESTER

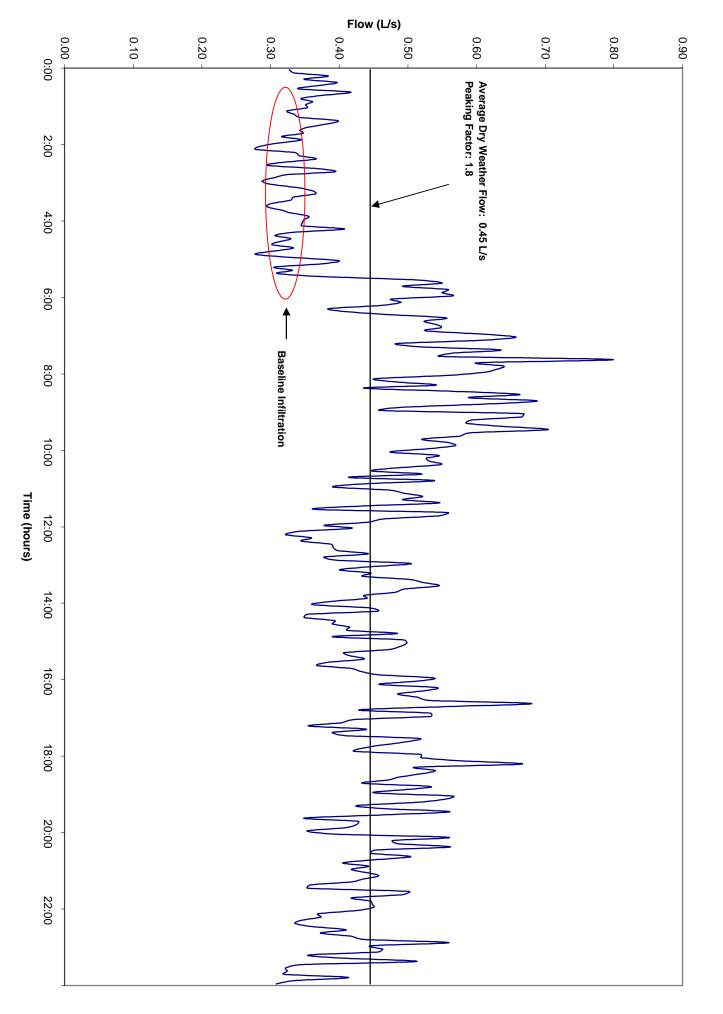

Location		_		Res	Commercial /			Infi	Itration	Flow				
1	2	3	4		5	6	8	10	11	13	15	17	18	20
BUILDING TYPE / FLOOR	From	То	Hotel / Condos	Care Unit	Row / Semi Units	Pop.	Cumulative Pop.	Pop. Flow, Q _(p)	Area	Flow, Q _(p)	Total Area	Infiltration Flow	Average Design Flow	Peak Design Flow
	Buil.	MH				[no.]	[no.]	[L/s]	[Sq.m]	[L/s]	[ha]	[L/s]	[L/s]	[L/s]
Phase 1														
A / 1st	^	MH-A	0	0	0	0	0	0.00	1592	0.15	0.60	0.14	0.29	0.36
A / 1st A / 2cd	A	MH-A	0	0	0	8	0 8	0.00	1592	0.15	0.60	0.14	0.29	0.36
A / 3rd	A	MH-A	40	0	0	80	88	0.32	0	0.00	0.00	0.00	0.32	1.30
B / 1st	В	MH-A	10	0	0	20	20	0.08	823	0.08	0.60	0.14	0.30	0.58
B / 2cd & 3rd	В	MH-A	40	0	0	80	100	0.32	0	0.00	0.00	0.00	0.32	1.30
C / b & 1st	С	MH-B	0	10	0	16	16	0.06	2478	0.23	0.75	0.17	0.47	0.78
C / 2cd - 3rd	сı	MH-C	88	0	0	176	192	0.71	0	0.00	0.00	0.00	0.71	2.85
C / 4th	С		0	17	0	27	219	0.11 0.00	0	0.00	0.00	0.00	0.11	0.44
D/ 1st - 4th	D	MH-D	55	0	0	110	110	0.45	0	0.00	0.30	0.07	0.51	1.85
E / 1st - 4th	E1	MH-E1	91	0	0	182	182	0.00 0.74	0	0.00	0.60	0.14	0.88	3.09
E / 1st - 4th	E2	MH-E1	91	0	0	182	364	0.74	0	0.00	0.60	0.14	0.88	3.09
Subtotal Phase	1					881		3.56	6671	0.63	3.45	0.79	4.98	15.97
Phase 2														
E / 1st - 4th	E3	MH-E1	91	0	0	182	182	0.74	0	0.00	0.60	0.14	0.88	3.09
F / 1st - 4th	F	F1	79	0	0	158	158	0.64	0	0.00	0.60	0.14	0.64	2.70
G x 7	G(1-7)		0	0	28	56	56	0.23	0	0.00	1.10	0.25	0.23	1.16
-			-		_				-					
H x 8	H(1-8)		0	0	40	80	80	0.32	0	0.00	1.10	0.25	0.32	1.55
Subtotal Phase	2					476		1.93	0	0.00	3.40	0.78	2.71	8.49
Phase 3														
G x 13	G(1-13)	MH-E1	0	0	52	104	104	0.42	0	0.00	2.20	0.51	0.93	2.19
H x 12	H(1-12)	F1	0	0	60	120	120	0.49	0	0.00	2.20	0.51	0.49	2.45
Jx4	J(1-4)		0	0	20	40	40	0.16	0	0.00	0.80	0.18	0.16	0.83
Subtotal Phase			,				10							
	J					264		1.07	0	0.00	5.20	1.20	2.27	5.47
Total All Phases	; 					1621		6.56	6671	0.63	12.05		9.96	29.94
Notes: Q = Average dail	v flow por	canita			350	L/day per c	anita		ARK-WINCH	IESTER				
Q = Average dan Qext. = Unit peak						L/s per gros				LUIER				
FP _{max} = Peak Fac					4	1 3 5 5		HYDE PARK						
FPmax = Peak Factor Commercial / institutional					1.5									
Hotel / Condos / Apartment Pop. Semi-Detached & Row House						Persons pe		WINCHESTER, ON						
Pop. Semi-Detac Care unit	ned & Ro	w House				Persons pe Persons pe								
Commercial / Ins	titutional	Flows				L/sq.m/day								
Institutional Flows	S					L/practition								
Qp = Peak popul	ation flow	,									Koll	aard Associ	ates Filo #·	120064
								1			r\01	aaiu 733001	a.co i 110 #.	120004

APPENDIX 'D'

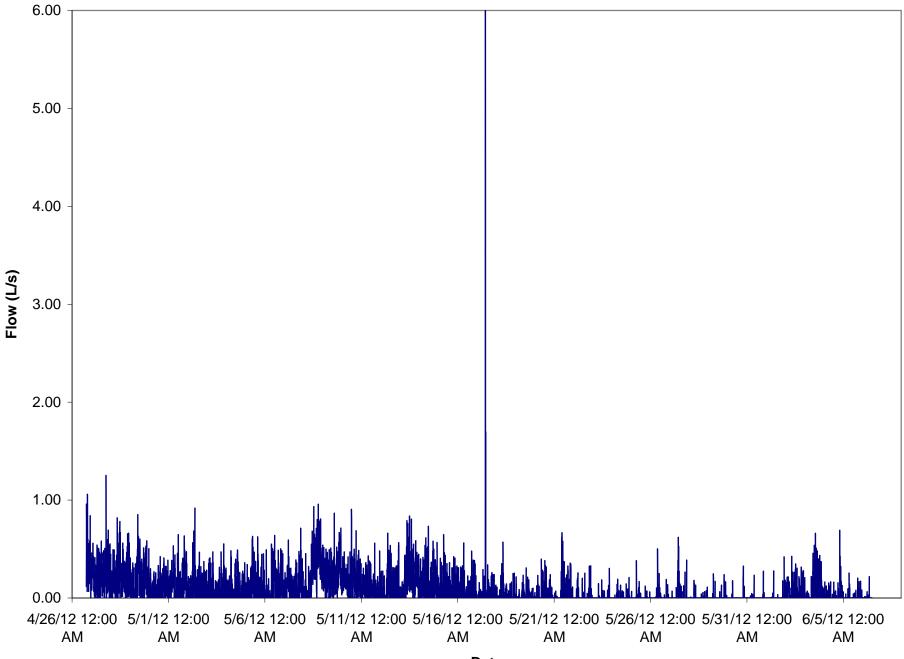

Flow Monitoring Data – ADDWF Hydrographs, Baseline Infiltration, Per Capita Flow Rates and Wet Weather Response

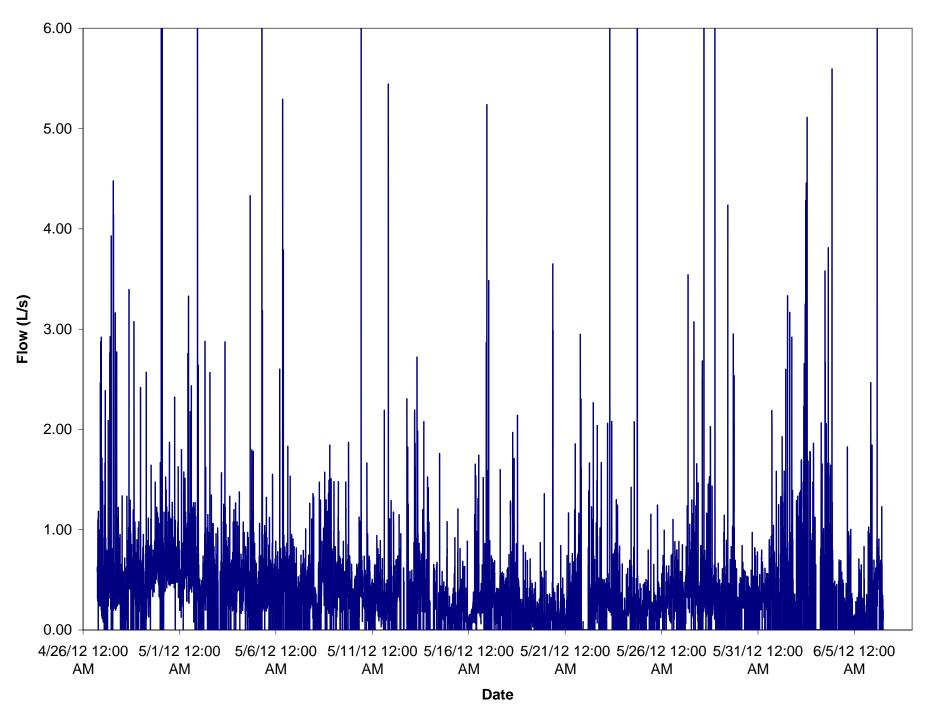
Monitor 1 - Raw Data

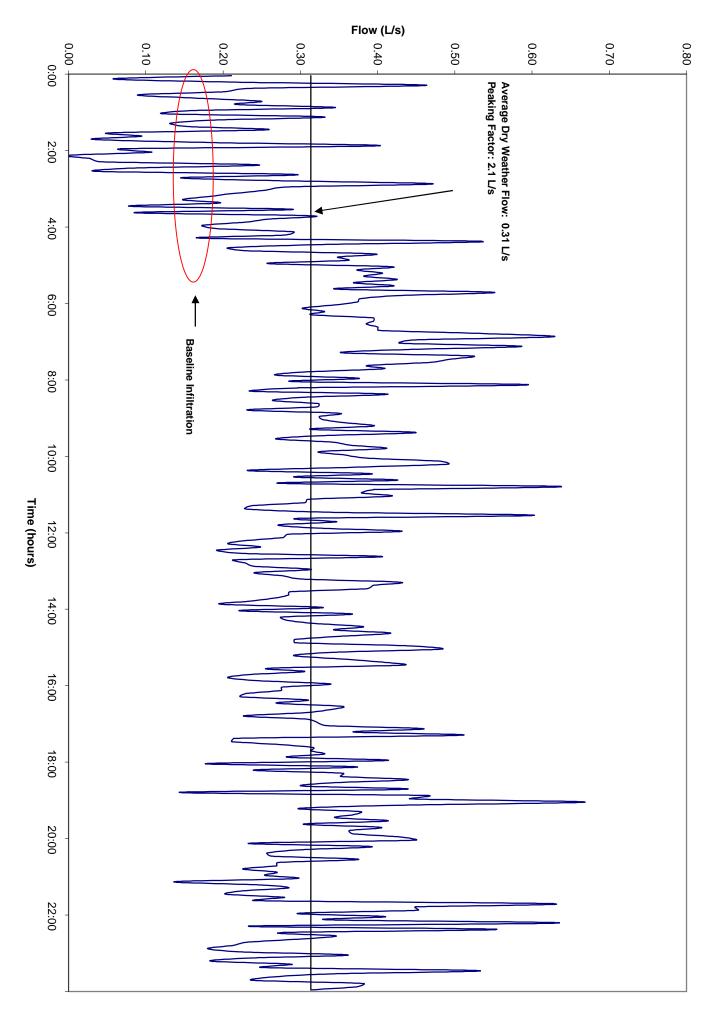


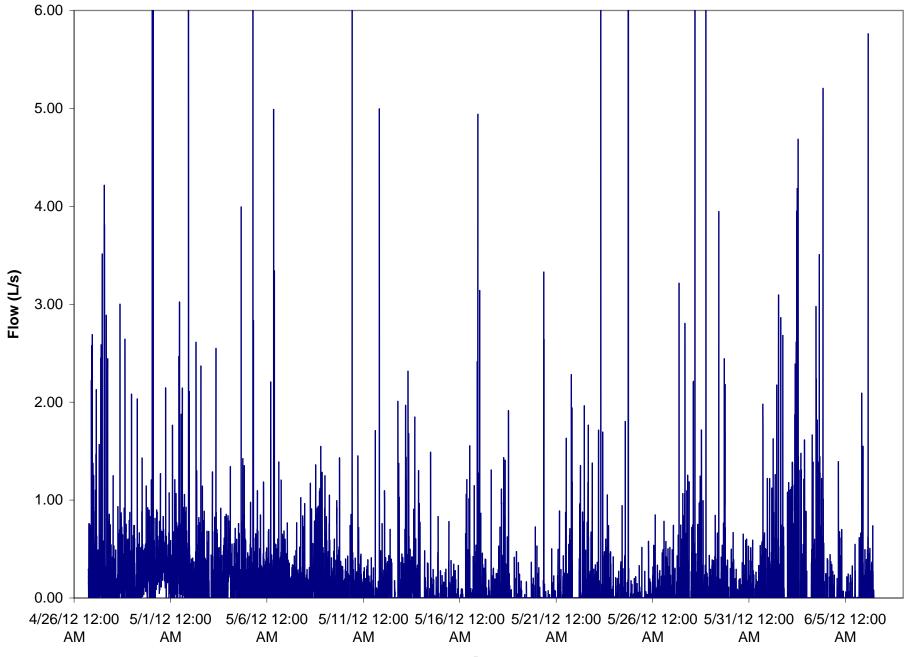


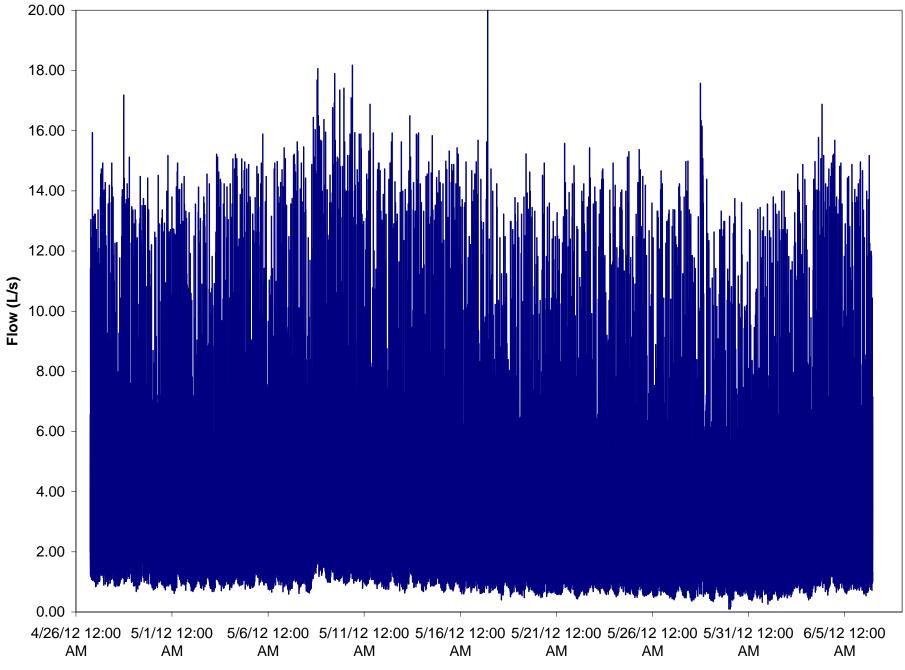
Monitor 1 - Extraneous Flow Hydrograph

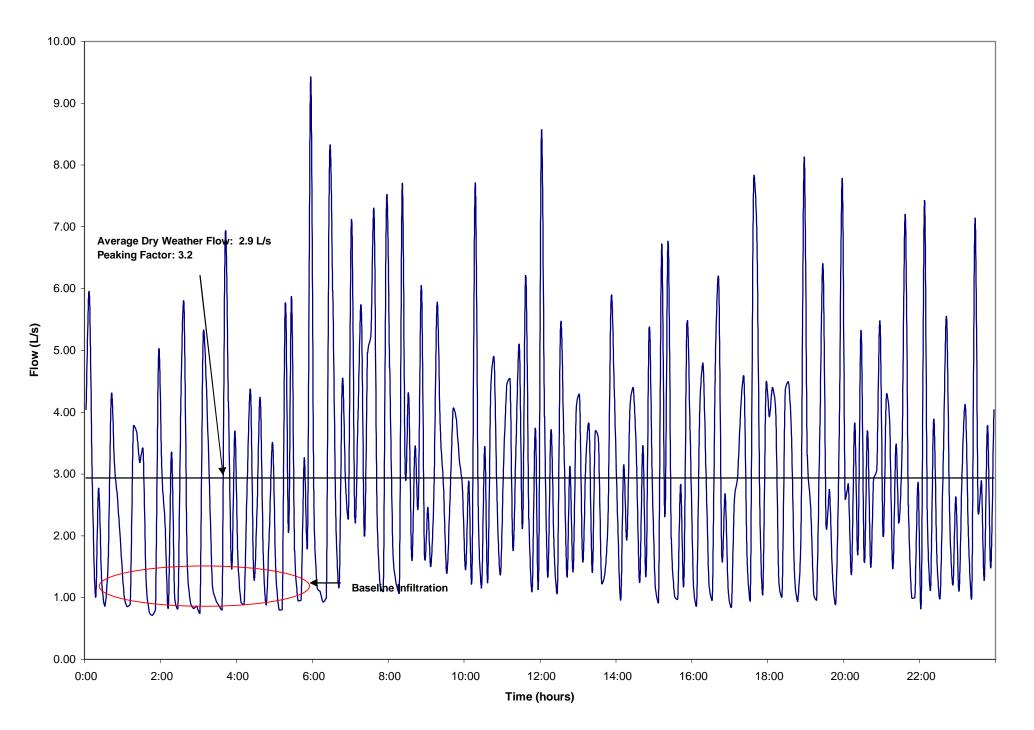


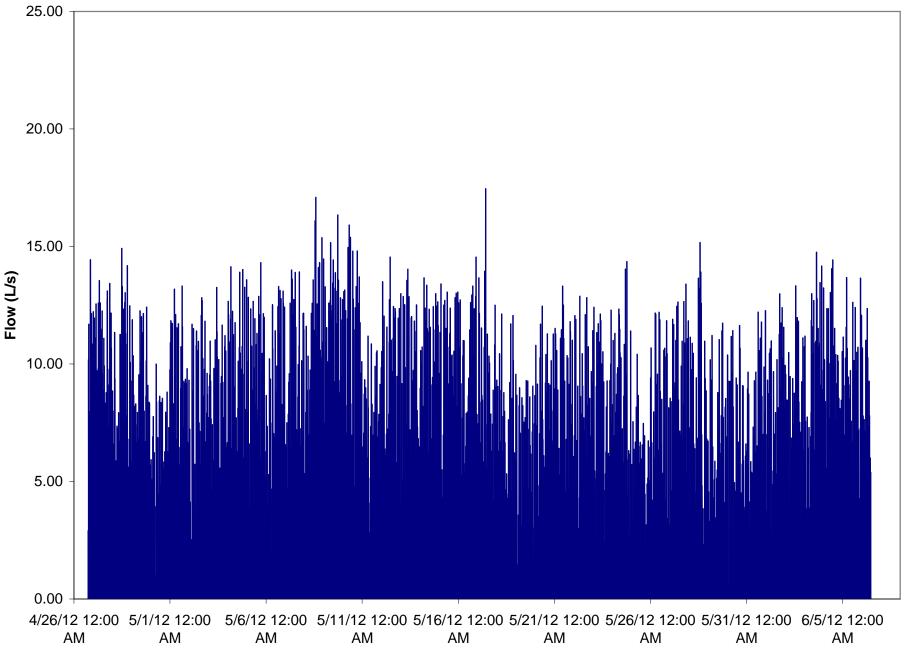

Monitor 2 - Raw Data

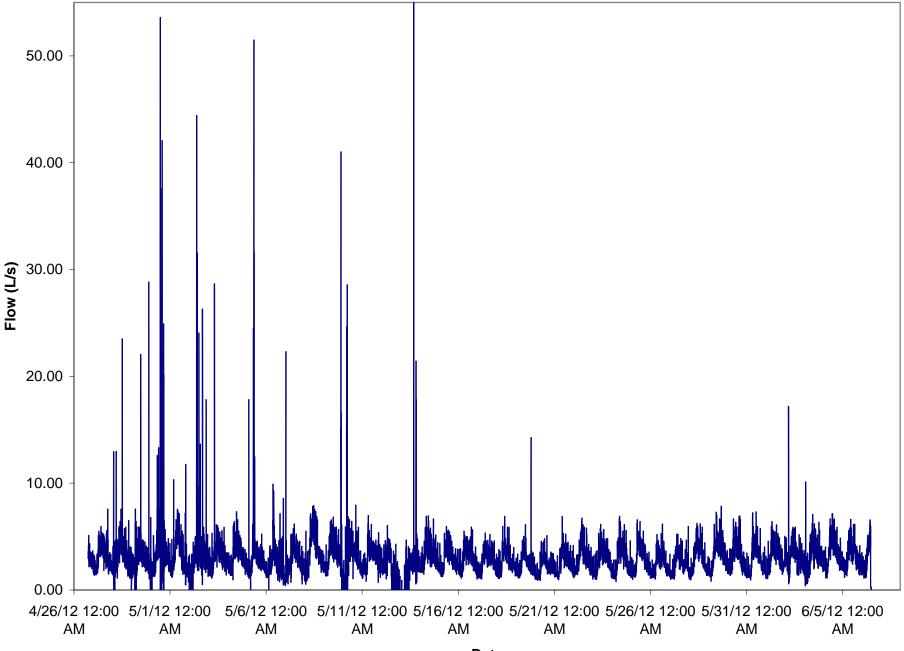


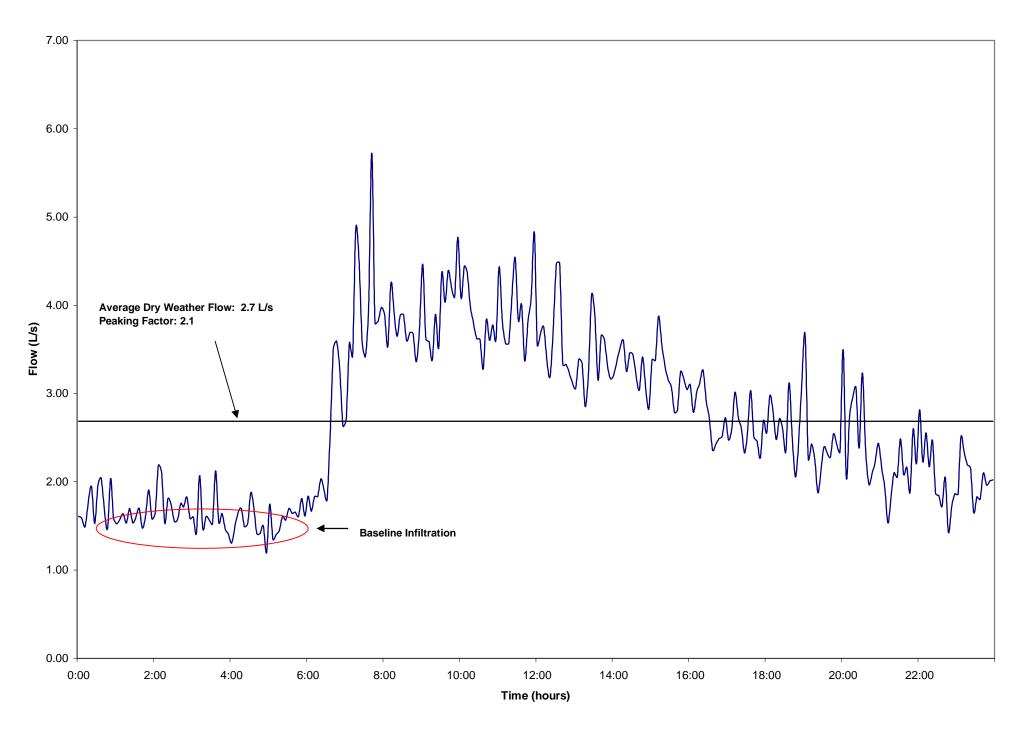


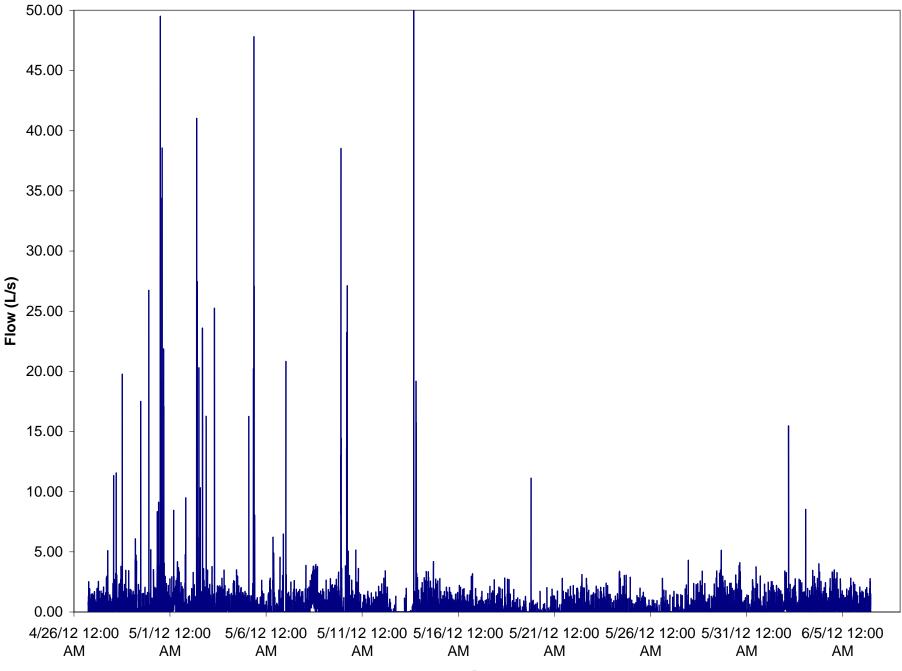


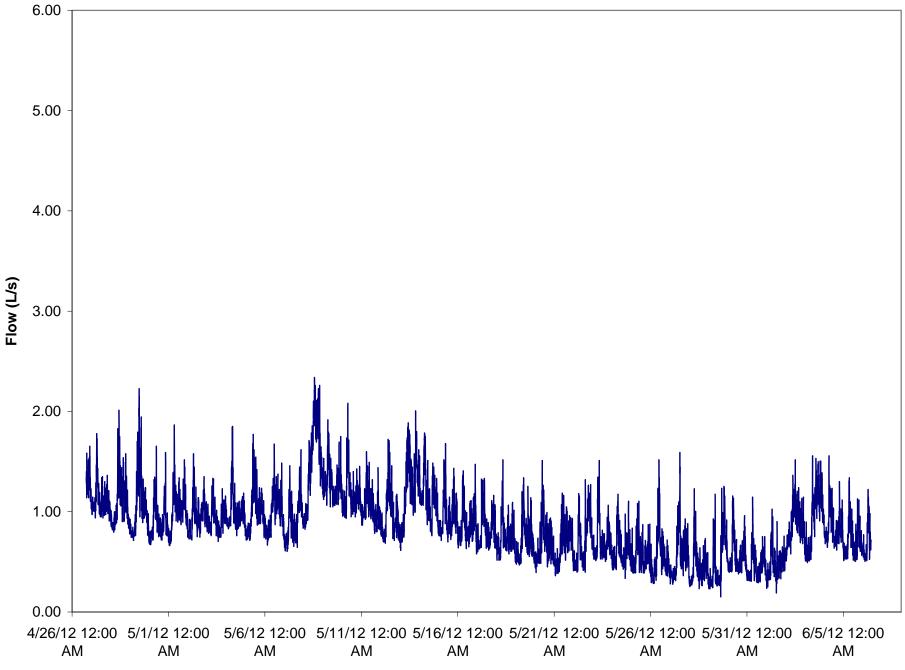

Monitor 3 - Extraneous Flow Hydrograph


Monitor 4 - Raw Data

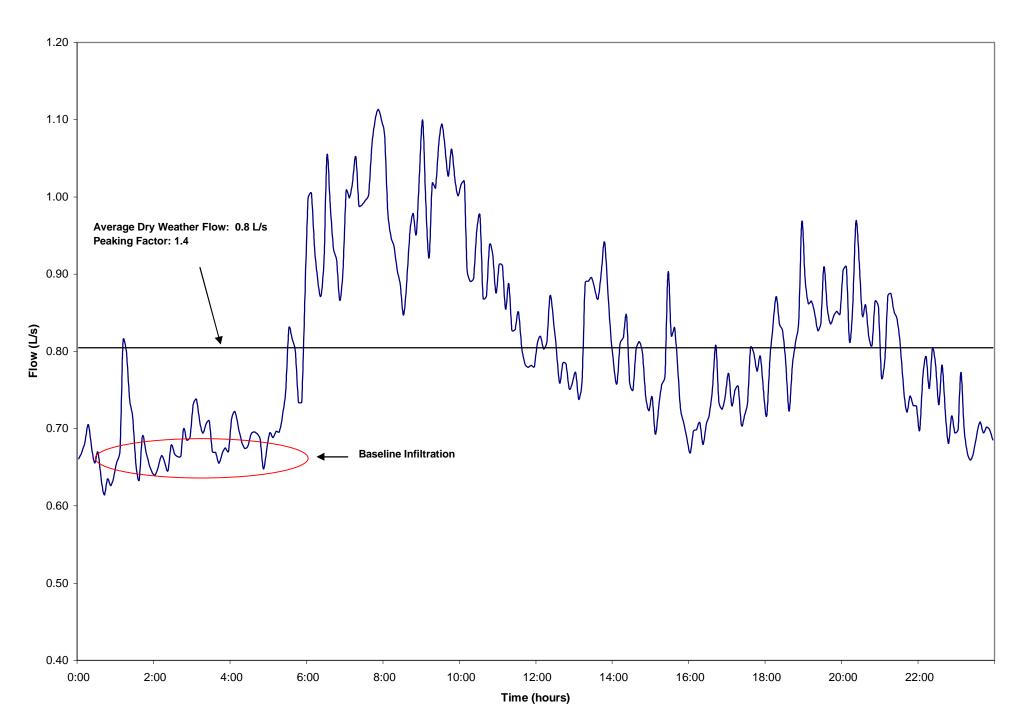

Monitor 4 - ADDWF

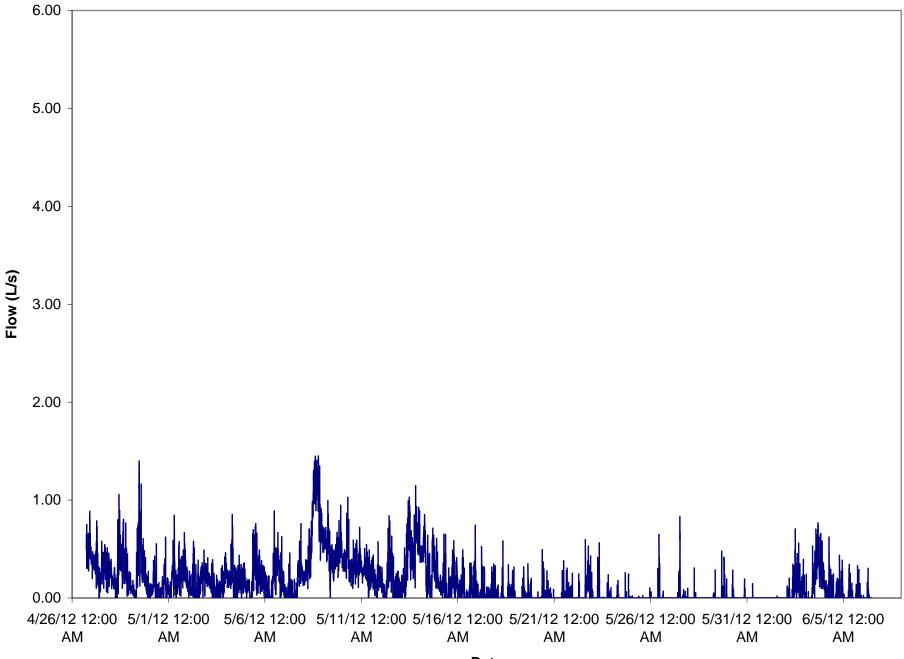


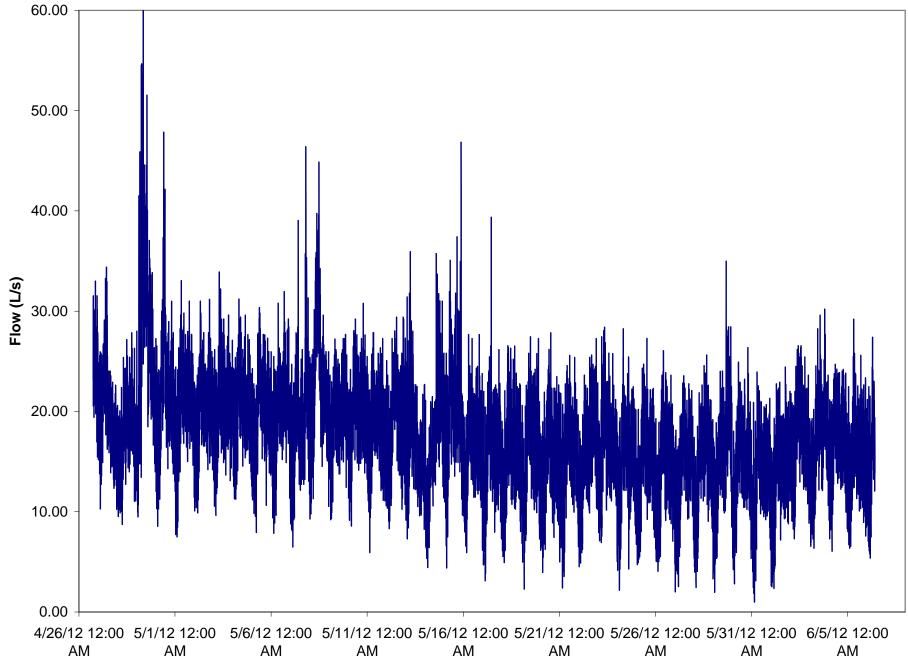

Monitor 4 - Extraneous Flow Hydrograph

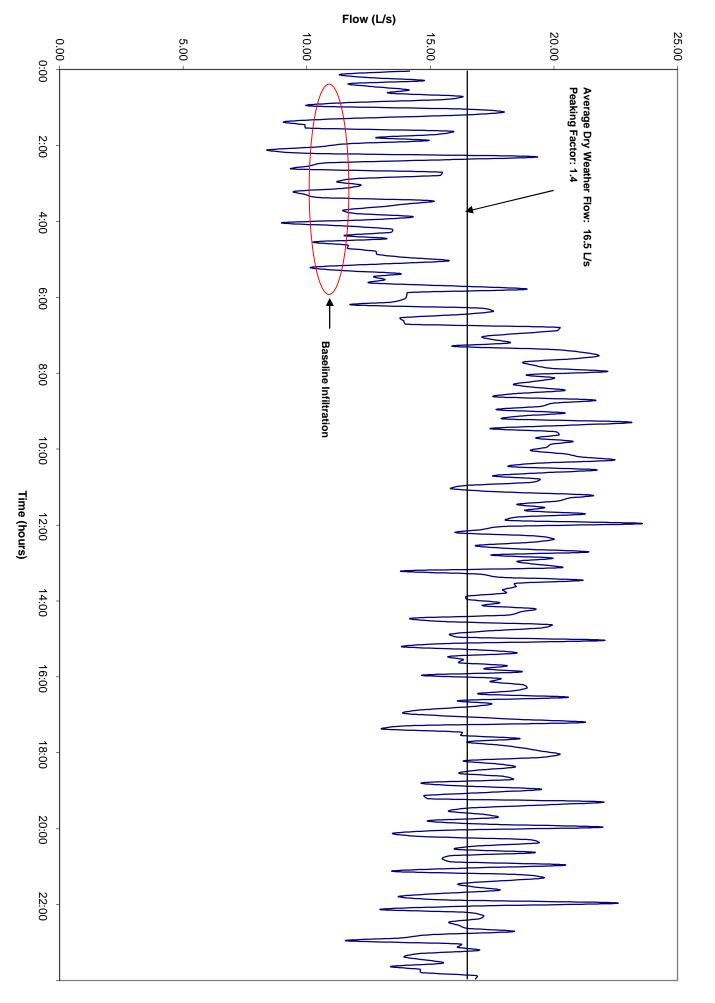


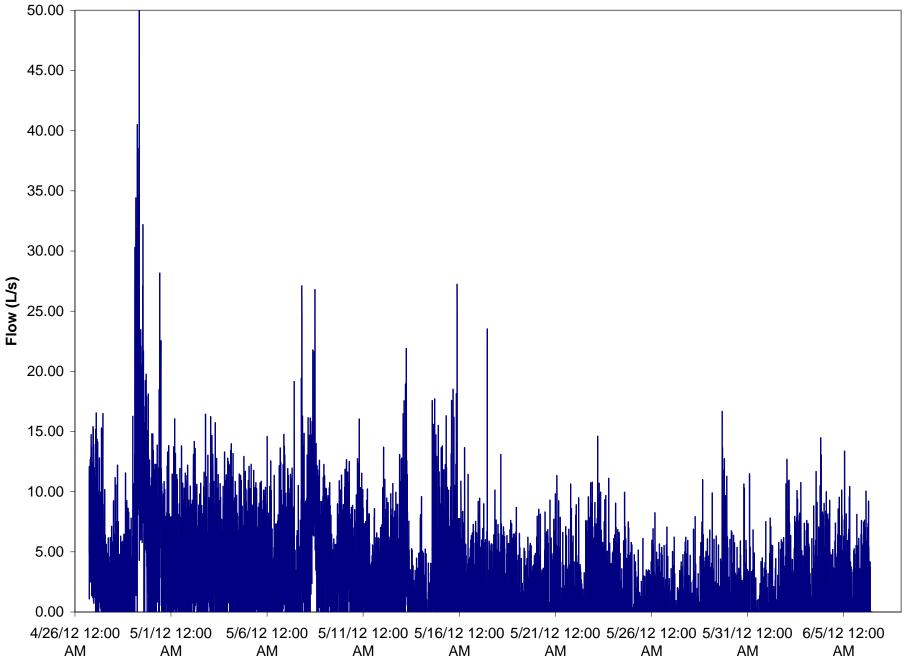
Monitor 5 - Raw Data

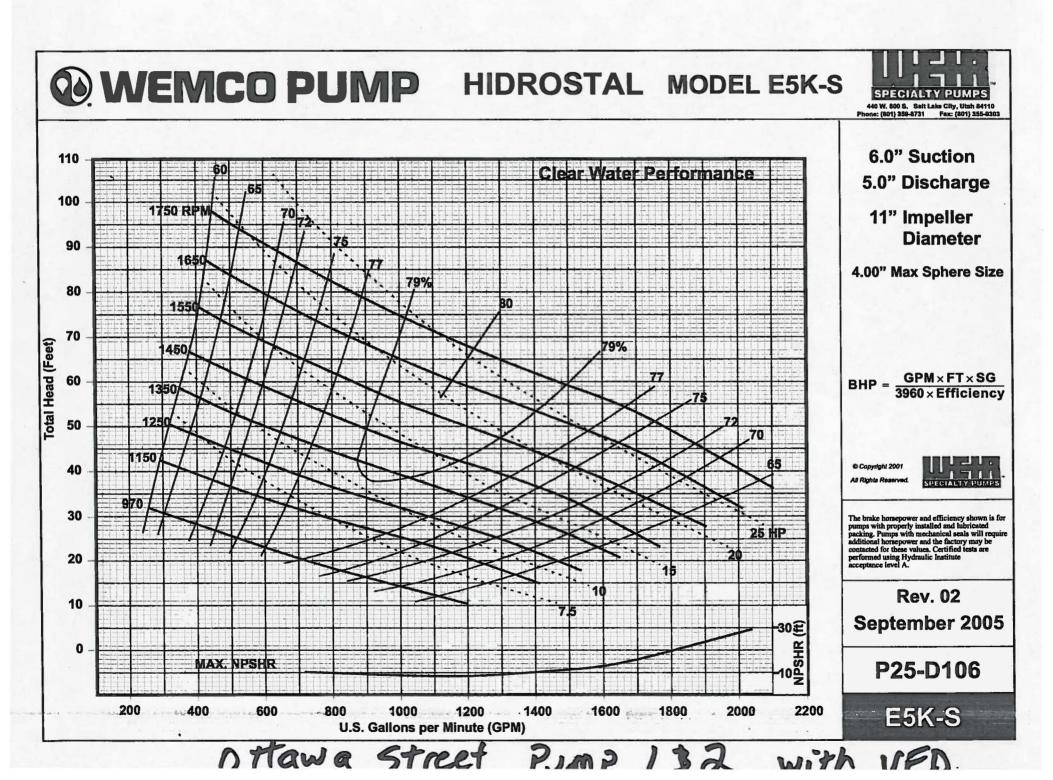




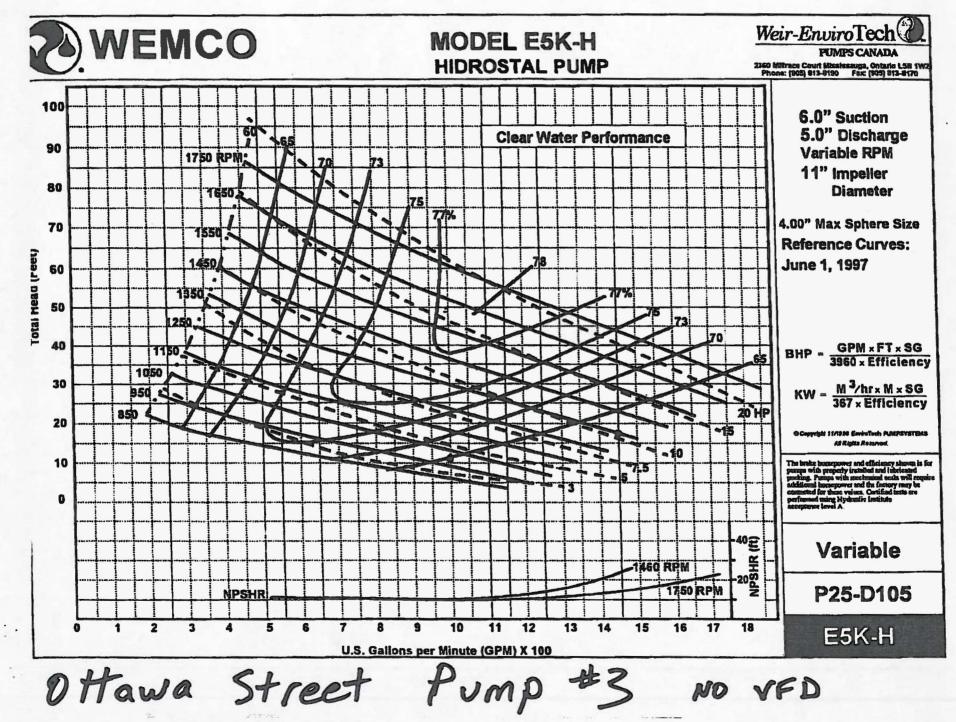


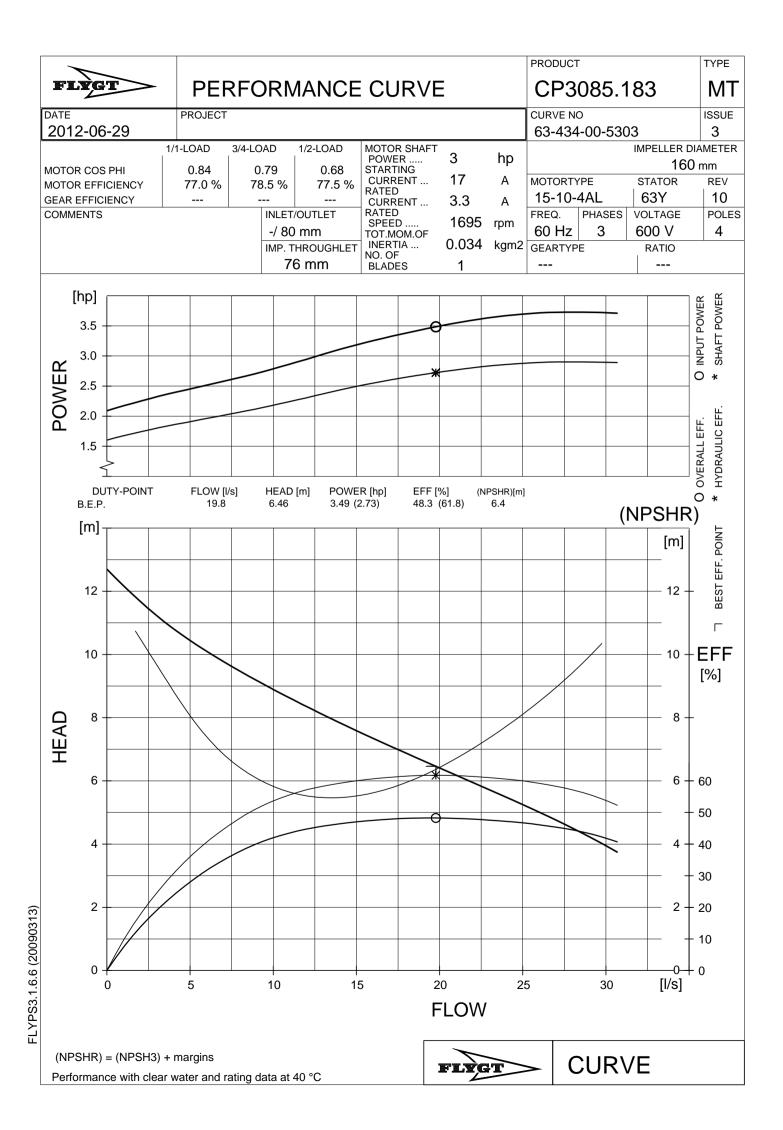

Monitor 6 - ADDWF

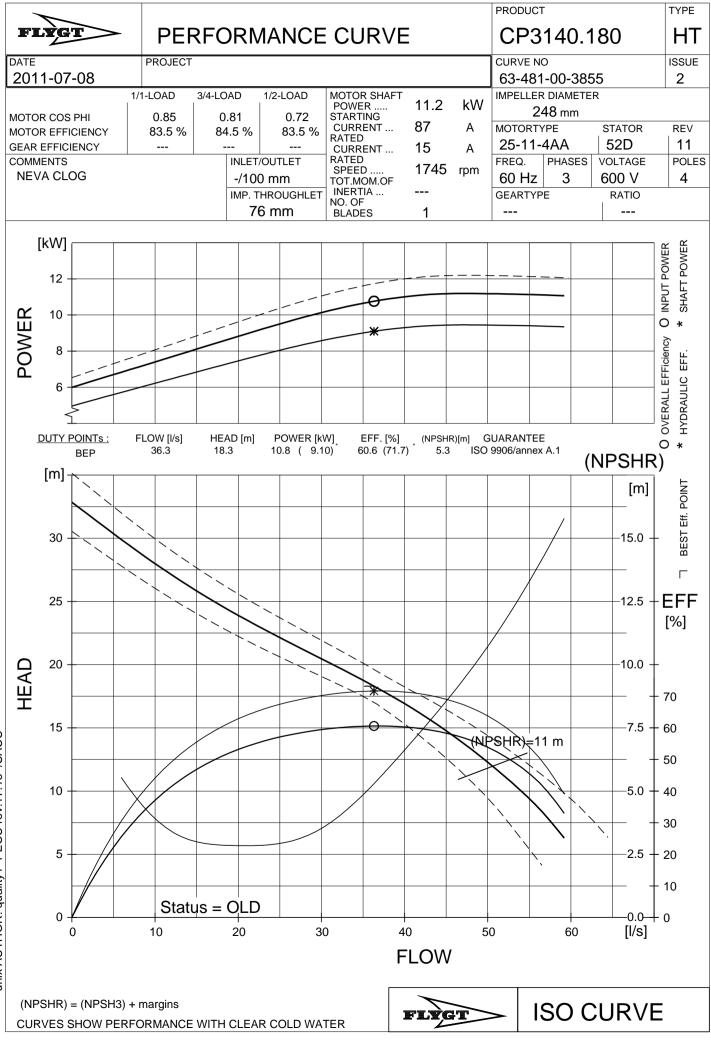

Monitor 6 - Extraneous Flow Hydrograph

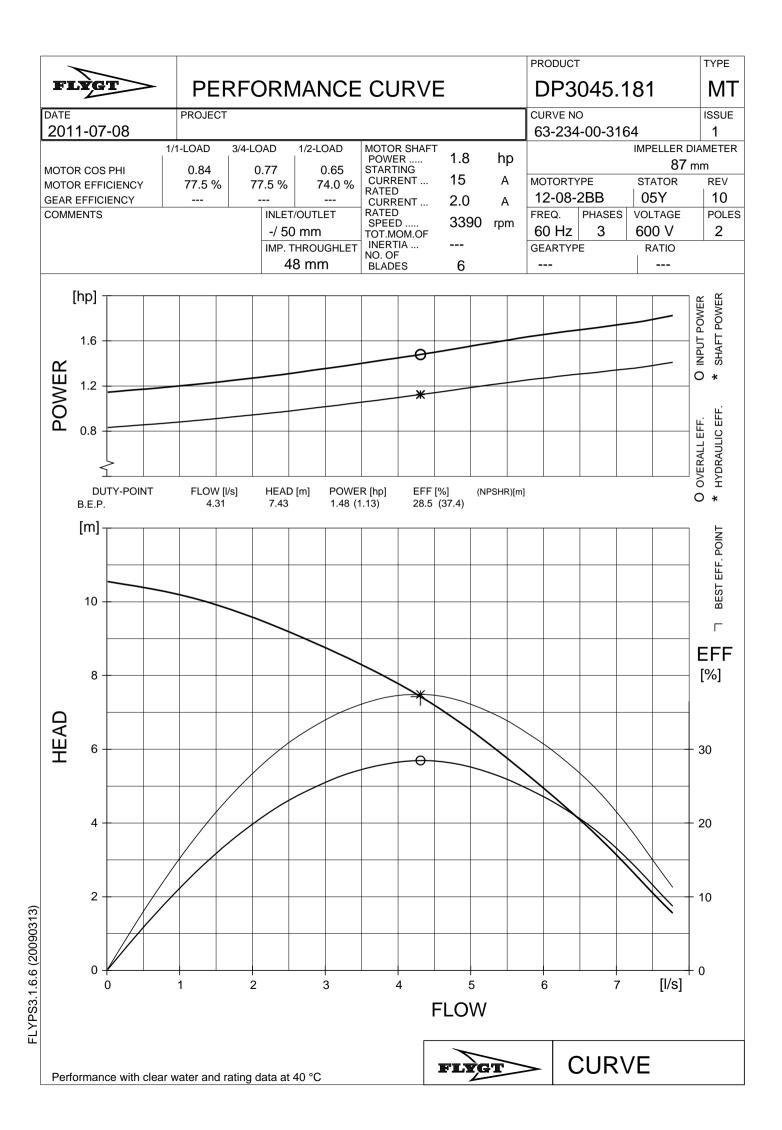


Village of Winchester Wet Weather Extraneous Flow Summary


Monitor	Date	Rainfall Duration (hrs)	Sewer Duration (hrs)	Volume (m ³)	Rainfall (mm)	Area (ha)	Rainfall Volume (m ³)	% Infiltration	Infiltration Rate (L/s/ha)	Average WW (L/s)	Peak Flow	Peaking Factor
	May 8, 2012	(1		()	14.7	12	1866.9		0.020			12.1
	June 1-2, 2012	7	27	1.9	10.1	12	1282.7	0.1%	0.002	0.02	0.75	38.4
1	June 3, 2012	3		1.6	15.5	12	1968.5	0.1%	0.004	0.04	1.76	39.6
								Average	0.008	0.10	1.79	17.9
	May 8, 2012	8	18.5	21.7	14.7	12.3	1808.1	1.2%	0.026	0.33	0.96	2.9
2	June 1-2, 2012	7	27	5.2	10.1	12.3	1242.3	0.4%	0.004	0.05	0.42	7.9
2	June 3, 2012	3	10	4.1	15.5	12.3	1906.5	0.2%	0.009	0.11	0.66	5.8
			0.013			4.1						
	May 8, 2012	8		17	14.7	5.6	823.2	2.1%	0.046	0.26	1.55	6.1
3	June 1-2, 2012	7	27	24.6	10.1	5.6	565.6		0.045	0.25	4.68	18.5
Ũ	June 3, 2012	3	10	9.7	15.5	5.6	868	1.1% Average	0.048	0.27	5.20	19.3
				0.26	3.81	14.7						
	May 8, 2012	8		168.6	14.7	49.3	7247.1		0.051	2.53		6.8
4	June 1-2, 2012	7	27	125.6	10.1	49.3	4979.3		0.026	1.29	13.32	10.3
	June 3, 2012	3	10	74.7	15.5	49.3	7641.5	1.0% Average	0.042	2.08	14.76	7.1
			0.040	1.97	15.06	7.7						
	May 8, 2012	8		83.2	14.7	14.3	2102.1	4.0%	0.087	1.25	3.95	3.2
5	June 1-2, 2012	7	27	53.9	10.1	14.3	1444.3		0.039	0.55		27.9
Ū	June 3, 2012	3	10	32.2	15.5	14.3	2216.5		0.063			4.5
								Average	0.063	0.90	-	8.7
	May 8, 2012	8		54.7	14.7	6.6	970.2	5.6%	0.1244	0.82	1.45	1.8
6	June 1-2, 2012	7		8.3	10.1	6.6	666.6		0.0129	0.09	0.71	8.3
-	June 3, 2012	3	10	13.4	15.5	6.6	1023	1.3% Average	0.0564	0.37	0.77	2.1
		- 1		0.43	0.98	2.3						
	May 8, 2012	8		328.2	14.7	134.2	19727.4		0.0660			3.0
7	June 1-2, 2012	7	27	184.9	10.1	134.2	13554.2	1.4%	0.0142	1.90	12.68	6.7
	June 3, 2012	3	10	107.2	15.5	134.2	20801	0.5%	0.0222	2.98	14.48	4.9
								Average	0.034	4.58	17.99	3.9


APPENDIX 'E'


Pump Curves



EXISTING PUMP OTTAWAST.

APPENDIX 'F'

Existing Peak Wet Weather Flow Summary Table and Schematic

FlexTable: Conduit Table (Winchester.swc) Active Scenario: Peaked Wet Weather Pumped - Existing

Current Time: 0.000 hours

Label	Slope (m/m)	Diameter (mm)	Flow (L/s)	Capacity (Full Flow) (L/s)	Capacity (Excess Full Flow) (L/s)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (m)	Hydraulic Grade Line (Middle) (m)	Hydraulic Grade Line (Out) (m)	Elevation Crown (Start) (m)	Elevation Crown (Stop) (m)	Invert (Start) (m)	Invert (Stop) (m)
182	0.002	250.0	30.75	25.56	-5.19	120.3	71.62	71.55	71.49	71.63	71.54	71.38	71.29
186	0.002 0.003	250.0	30.07	28.08 32.85	-2.00	107.1 95.0	71.72 71.21	71.67 71.11	71.62 71.01	71.72 71.27	71.63 71.07	71.47 71.02	71.38 70.82
177 185	0.003	250.0 250.0	31.20 30.06	32.85 31.86	1.66 1.80	95.0 94.4	71.21	71.11	71.01	71.27	71.07	71.02	70.82
160	0.003	250.0	30.00	31.68	2.28	94.4 93.4	71.73	70.86	70.70	71.07	70.76	70.82	70.51
184	0.003	250.0	30.06	32.70	2.64	91.9	71.87	70.00	70.70	71.93	70.70	71.68	71.52
178	0.003	250.0	30.75	35.17	4.42	87.4	71.39	71.29	71.21	71.46	71.25	71.21	71.00
188	0.003	250.0	29.40	33.85	4.45	86.9	72.10	72.02	71.94	72.17	72.01	71.92	71.76
96	0.004	250.0	29.02	35.80	6.78	81.1	77.93	77.87	77.80	78.01	77.88	77.76	77.63
97	0.004	250.0	29.39	39.32	9.93	74.7	77.79	77.53	77.27	77.88	77.36	77.63	77.11
45 126	0.004 0.001	200.0 600.0	11.45 73.25	20.18 141.63	8.73 68.38	56.7 51.7	72.52 69.79	72.47 69.77	72.43 69.76	72.61 70.08	72.52 70.05	72.41 69.48	72.32 69.45
120	0.001	250.0	7.68	19.89	12.20	38.6	70.09	70.07	70.06	70.08	70.03	69.98	69.95
109	0.001	600.0	78.20	204.77	126.57	38.2	69.12	69.11	69.10	69.46	69.44	68.86	68.84
143	0.002	450.0	43.16	113.96	70.80	37.9	69.96	69.89	69.81	70.22	70.07	69.77	69.62
110	0.001	600.0	78.89	234.46	155.58	33.6	69.02	69.00	68.98	69.38	69.34	68.78	68.74
141	0.002	450.0	41.86	125.78	83.92	33.3	70.19	70.08	69.98	70.46	70.25	70.01	69.80
98 140	0.028	250.0	29.69	98.71	69.02	30.1	77.18	75.94	74.71	77.33	74.87	77.08	74.62
142 9a	0.003 0.001	450.0 250.0	42.75 5.92	145.10 20.73	102.35 14.81	29.5 28.6	69.97 71.41	69.97 71.40	69.96 71.38	70.25 71.57	70.22 71.54	69.80 71.32	69.77 71.29
100	0.001	600.0	73.17	267.78	194.61	20.0	69.79	69.81	69.79	70.16	70.08	69.56	69.48
47	0.004	200.0	5.53	21.00	15.48	26.3	73.10	72.98	72.85	73.23	72.98	73.03	72.78
107	0.002	600.0	76.34	290.20	213.86	26.3	69.33	69.25	69.17	69.72	69.56	69.12	68.96
108	0.002	600.0	76.39	292.07	215.68	26.2	69.17	69.12	69.12	69.56	69.46	68.96	68.86
103	0.002	600.0	74.95	294.99	220.04	25.4	69.47	69.40	69.33	69.86	69.72	69.26	69.12
140 48	0.003 0.004	450.0 200.0	40.06 5.31	159.79 21.95	119.73 16.64	25.1 24.2	70.64 73.37	70.46 73.24	70.28 73.10	70.94 73.51	70.58 73.23	70.49 73.31	70.13 73.03
48 223	0.004	200.0	5.31 4.71	21.95 19.66	16.64 14.95	24.2 24.0	73.87	73.24	73.10	73.51	73.23	73.31	73.03
35	0.004	200.0	4.58	20.10	15.53	22.8	70.24	70.04	69.83	70.38	69.97	70.18	69.77
46	0.006	200.0	5.99	26.34	20.35	22.7	72.84	72.67	72.52	72.98	72.63	72.78	72.43
51	0.004	200.0	4.41	19.59	15.18	22.5	70.52	70.39	70.26	70.66	70.40	70.46	70.20
99 101	0.057 0.004	250.0	29.94 74.75	141.51 372.71	111.57 297.96	21.2	74.69	72.19 69.52	69.79	74.87 70.01	69.86	74.62 69.41	69.61
101 12	0.004	600.0 250.0	74.75 6.50	372.71 32.97	297.96	20.1 19.7	69.59 70.78	69.52 70.61	69.47 70.44	70.01	69.86 70.61	69.41 70.70	69.26 70.36
156	0.003	300.0	5.22	28.60	23.38	19.7	70.78	70.01	70.44	70.95	71.44	71.19	70.30
422	0.001	200.0	1.67	9.44	7.77	17.7	74.01	73.97	73.92	74.15	74.07	73.95	73.87
11	0.004	250.0	6.27	36.91	30.64	17.0	71.06	70.91	70.78	71.24	70.95	70.99	70.70
52	0.004	200.0	3.35	19.80	16.46	16.9	70.66	70.59	70.52	70.80	70.66	70.60	70.46
14	0.006	250.0	7.68	45.85	38.17	16.8	70.25	70.11	70.09	70.43	70.16	70.18	69.91
10 55	0.004 0.004	250.0 200.0	6.13 3.14	38.08 19.85	31.95 16.71	16.1 15.8	71.36 71.09	71.21 70.97	71.06 70.85	71.54 71.24	71.24 71.00	71.29 71.04	70.99 70.80
224	0.004	200.0	3.14 4.76	30.14	25.38	15.8	73.62	70.97	70.85	71.24	73.25	73.57	73.05
53	0.004	200.0	3.28	21.00	17.72	15.6	70.82	70.74	70.66	70.97	70.80	70.77	70.60
5	0.002	250.0	3.49	24.88	21.39	14.0	72.64	72.62	72.60	72.83	72.79	72.58	72.54
450	0.002	250.0	3.65	26.25	22.60	13.9	71.21	71.12	71.11	71.40	71.21	71.15	70.96
CO-4	0.004	250.0	5.11	37.61	32.50	13.6	71.02	71.02	71.02	71.21	71.21	70.96	70.96
56 8	0.004 0.004	200.0 250.0	2.95 4.89	21.78 36.35	18.83 31.46	13.5 13.4	71.34 71.98	71.21 71.82	71.09 71.66	71.49 72.17	71.24 71.85	71.29 71.92	71.04 71.60
8 58	0.004	250.0	4.89 2.73	30.35 20.70	31.40 17.97	13.4 13.2	71.98	71.82	71.66	72.17	71.85	71.92	71.80
CO-1	0.010	600.0	78.89	614.01	535.12	12.8	68.88	68.87	68.87	69.33	69.33	68.73	68.73
222	0.003	200.0	2.35	18.56	16.22	12.6	74.22	74.05	73.89	74.37	74.04	74.17	73.84
9	0.005	250.0	4.97	40.61	35.64	12.2	71.66	71.52	71.41	71.85	71.57	71.60	71.32
158	0.002	300.0	5.61	45.87	40.26	12.2	70.80	70.69	70.64	71.03	70.81	70.73	70.51
18 60	0.004 0.003	200.0 200.0	2.69 2.14	21.98 17.49	19.30 15.36	12.2 12.2	72.30 71.99	72.13 71.91	72.10 71.84	72.45 72.14	72.12 71.99	72.25 71.94	71.92 71.79
7	0.003	250.0	4.37	35.84	31.47	12.2	72.29	72.13	71.98	72.14	72.17	72.23	71.79
161	0.002	200.0	1.92	15.83	13.91	12.1	71.32	71.18	71.04	71.47	71.20	71.27	71.00
13	0.008	250.0	6.50	54.23	47.73	12.0	70.42	70.33	70.25	70.61	70.43	70.36	70.18
21	0.004	200.0	2.34	19.60	17.26	11.9	72.85	72.70	72.56	73.01	72.71	72.81	72.51
34	0.003	250.0	3.66	31.70	28.04	11.6	72.86	72.69	72.53	73.05	72.72	72.80	72.47
19 33	0.005 0.003	200.0 250.0	2.57 3.37	22.58 30.07	20.01 26.69	11.4 11.2	72.56 73.04	72.43 72.95	72.30 72.86	72.71 73.23	72.45 73.05	72.51 72.98	72.25 72.80
55 59	0.003	200.0	2.66	24.02	20.09	11.2	73.04	72.93	72.80	73.23	73.05	72.98	72.80
449	0.003	250.0	3.33	30.14	26.81	11.1	71.47	71.34	71.21	71.66	71.40	71.41	71.15
448	0.002	250.0	2.98	28.32	25.34	10.5	71.72	71.59	71.47	71.91	71.66	71.66	71.41
22	0.004	200.0	2.16	20.71	18.55	10.4	73.19	73.02	72.85	73.35	73.01	73.15	72.81
32 6	0.003 0.004	250.0 250.0	3.21 3.69	30.92 36.30	27.71 32.61	10.4 10.2	73.20 72.59	73.13 72.44	73.05 72.29	73.40 72.79	73.25 72.48	73.15 72.54	73.00 72.23
о 61	0.004	250.0	3.09 2.07	30.30 21.32	32.01 19.26	9.7	72.59	72.44	72.29	72.79	72.48	72.54 72.15	72.23
198	0.004	200.0	1.08	11.80	10.73	9.1	73.43	73.39	73.34	73.59	73.50	73.39	73.30
221	0.003	200.0	1.71	19.40	17.69	8.8	74.50	74.38	74.26	74.66	74.42	74.46	74.22
31	0.003	250.0	2.47	30.33	27.86	8.1	73.44	73.35	73.26	73.64	73.46	73.39	73.21
4	0.004	250.0	2.96	36.87	33.91	8.0	72.91	72.77	72.64	73.11	72.83	72.86	72.58
44 3	0.005 0.003	200.0 250.0	1.79 2.70	22.53 34.98	20.74 32.28	7.9 7.7	72.96 73.20	72.73 73.05	72.52 72.91	73.12 73.40	72.67 73.11	72.92 73.15	72.47 72.86
3 62	0.003	250.0 200.0	2.70 1.54	34.98 20.66	32.28 19.12	7.7	73.20 72.47	73.05 72.34	72.91 72.21	73.40 72.63	73.11 72.37	73.15 72.43	72.86
159	0.004	200.0	2.02	20.00	25.38	7.4	72.47	72.34	72.21	72.03	72.37	72.43	72.17
83	0.003	200.0	1.40	19.07	17.67	7.3	74.67	74.58	74.50	74.83	74.66	74.63	74.46
447	0.004	200.0	1.47	20.61	19.14	7.1	72.49	72.29	72.10	72.65	72.26	72.45	72.06
43	0.005	200.0	1.59	23.01	21.42	6.9	73.11	73.03	72.96	73.27	73.12	73.07	72.92
CO-3	0.060	300.0	16.02	236.87	220.84	6.8 6.7	69.82 70.19	69.81 70.02	69.79	70.07	70.04	69.77 70.15	69.74
127 157	0.004 0.007	200.0 300.0	1.42 5.30	21.31 83.06	19.89 77.75	6.7 6.4	70.18 71.19	70.02 70.99	69.86 70.80	70.35 71.44	70.02 71.03	70.15 71.14	69.82 70.73
165	0.007	200.0	5.30 1.33	83.08 20.98	19.65	6.4 6.4	71.19	70.99	70.80	71.44	71.03	71.14	70.73
1	0.002	250.0	1.85	29.32	27.47	6.3	73.66	73.56	73.46	73.87	73.67	73.62	73.42
200	0.003	200.0	1.04	17.26	16.23	6.0	70.66	70.59	70.52	70.83	70.69	70.63	70.49
139	0.003	200.0	1.14	19.16	18.01	6.0	70.56	70.38	70.20	70.73	70.37	70.53	70.17
167	0.003	200.0	1.07	18.03	16.96	6.0 5.7	72.12	72.09	72.05	72.29	72.22	72.09	72.02
30 129	0.002 0.004	250.0 200.0	1.69 1.08	29.59 19.74	27.90 18.66	5.7 5.5	73.71 70.54	73.57 70.36	73.44 70.18	73.92 70.71	73.64 70.35	73.67 70.51	73.39 70.15
416	0.004	200.0 250.0	1.08	19.74 32.78	30.99	5.5 5.5		70.36 73.24		70.71	70.35	70.51	70.15
• •			-										CAD V8i (SELE

Winchester.swc 11/6/2012 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley SewerCAD V8i (SELECTseries 2) [08.11.02.75] Page 1 of 3

FlexTable: Conduit Table (Winchester.swc) Active Scenario: Peaked Wet Weather Pumped - Existing

Current Time: 0.000 hours

Label	Slope (m/m)	Diameter (mm)	Flow (L/s)	Capacity (Full Flow) (L/s)	Capacity (Excess Full Flow) (L/s)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (m)	Hydraulic Grade Line (Middle) (m)	Hydraulic Grade Line (Out) (m)	Elevation Crown (Start) (m)	Elevation Crown (Stop) (m)	Invert (Start) (m)	Invert (Stop) (m)
201	0.003	200.0	1.03	18.95	17.92	5.4	70.82	70.76	70.71	70.99	70.87	70.79	70.67
24 501	0.003 0.005	250.0 200.0	1.53 1.13	30.18 22.40	28.65 21.27	5.1 5.0	73.67 73.33	73.57 73.18	73.48 73.03	73.88 73.50	73.69 73.20	73.63 73.30	73.44 73.00
116	0.003	200.0	1.04	20.77	19.73	5.0	76.23	76.07	75.90	76.40	76.07	76.20	75.87
2	0.005	250.0	2.12	43.05	40.93	4.9	73.46	73.32	73.20	73.67	73.40	73.42	73.15
446	0.004	200.0	1.01	20.73	19.72	4.9	72.88	72.68	72.49	73.05	72.65	72.85	72.45
443	0.008	200.0	1.45	30.03	28.57	4.8	69.85	69.71	69.59	70.02	69.74	69.82	69.54
453	0.002	250.0	1.23	26.09	24.86	4.7	71.91	71.81	71.72	72.12	71.92	71.87	71.67
42 85	0.009 0.004	200.0 200.0	1.48 0.91	31.68 20.01	30.19 19.09	4.7 4.6	73.97 75.06	73.53 74.95	73.11 74.84	74.14 75.23	73.27 75.01	73.94 75.03	73.07 74.81
83 84	0.004	200.0	0.91	20.01	21.22	4.0	75.00	74.93	74.67	75.23	74.82	75.03	74.61
138	0.004	200.0	0.91	20.81	19.89	4.4	71.04	70.88	70.73	71.21	70.90	71.01	70.70
166	0.006	200.0	1.14	26.21	25.06	4.4	72.05	71.72	71.62	72.22	71.57	72.02	71.37
460	0.003	250.0	1.37	31.46	30.10	4.3	71.90	71.81	71.72	72.12	71.93	71.87	71.68
CO-2 202	0.120 0.005	250.0 200.0	8.94 0.99	206.00 23.03	197.06 22.03	4.3 4.3	69.99 71.23	69.96 71.06	69.93 70.89	70.20 71.40	70.14 71.06	69.95 71.20	69.89 70.86
468	0.003	200.0	1.37	23.03 31.92	30.55	4.3	71.23	71.00	70.89	71.40	71.00	71.20	70.88
23	0.004	250.0	1.66	38.99	37.33	4.3	73.48	73.38	73.29	73.69	73.50	73.44	73.25
412	0.001	200.0	0.32	7.49	7.17	4.3	69.96	69.97	69.96	70.00	69.99	69.80	69.79
236	0.004	200.0	0.88	20.73	19.85	4.2	71.36	71.15	70.94	71.53	71.11	71.33	70.91
130 113	0.004 0.017	200.0 200.0	0.82 1.81	19.43 43.32	18.61 41.51	4.2 4.2	70.81 73.23	70.68 72.68	70.54 72.14	70.99 73.40	70.71 72.31	70.79 73.20	70.51 72.11
168	0.017	200.0	1.01	43.32 26.90	25.86	4.2 3.8	73.23	72.00	72.14	73.40	72.31	73.20	72.09
481	0.004	200.0	0.81	21.41	20.60	3.8	72.37	72.37	72.37	72.30	72.20	72.10	72.00
114	0.018	200.0	1.64	43.59	41.96	3.8	74.42	73.82	73.23	74.59	73.40	74.39	73.20
40	0.009	200.0	1.06	30.24	29.18	3.5	76.15	75.83	75.51	76.32	75.68	76.12	75.48
66 115	0.005 0.017	200.0 200.0	0.80 1.44	22.95 43.10	22.16 41.66	3.5 3.4	75.09 75.52	75.04 74.97	74.99 74.42	75.26 75.69	75.16 74.59	75.06 75.49	74.96 74.39
456	0.017	200.0	0.87	26.33	25.46	3.4	75.52	74.97	74.42	72.20	74.59	73.49	74.39
137	0.005	200.0	0.74	22.53	21.79	3.3	71.26	71.15	71.04	71.44	71.21	71.24	71.01
196	0.004	200.0	0.67	20.70	20.03	3.3	73.43	73.43	73.43	71.99	71.82	71.79	71.62
458	0.003	250.0	1.01	32.07	31.06	3.1	72.46	72.30	72.14	72.68	72.36	72.43	72.11
63 120	0.019 0.008	200.0 200.0	1.41 0.91	45.68 29.95	44.27 29.05	3.1 3.0	73.62 77.13	73.09 76.91	72.55 76.68	73.80 77.31	72.73 76.86	73.60 77.11	72.53 76.66
65	0.000	200.0	0.75	24.92	24.17	3.0	75.30	75.21	75.11	75.48	75.29	75.28	75.09
118	0.009	200.0	0.91	30.34	29.44	3.0	76.68	76.65	76.62	76.86	76.80	76.66	76.60
189	0.004	200.0	0.64	21.34	20.70	3.0	71.94	71.87	71.87	72.12	71.96	71.92	71.76
64 215	0.019	200.0	1.33	44.68	43.35	3.0 2.9	74.61	74.12	73.62	74.79	73.80	74.59	73.60
183	0.005 0.004	200.0 200.0	0.63 0.58	22.23 21.35	21.59 20.77	2.9	72.74 71.86	72.64 71.69	72.53 71.62	72.92 72.04	72.71 71.69	72.72 71.84	72.51 71.49
38	0.004	200.0	0.57	21.03	20.50	2.7	76.82	76.72	76.61	77.00	76.79	76.80	76.59
117	0.010	200.0	0.91	33.55	32.64	2.7	76.62	76.44	76.25	76.80	76.43	76.60	76.23
204	0.004	200.0	0.55	20.21	19.67	2.7	71.37	71.30	71.23	71.55	71.40	71.35	71.20
454	0.004	200.0	0.55 0.75	20.35 27.81	19.81 27.07	2.7 2.7	72.88 73.29	72.75	72.61	73.06	72.79	72.86	72.59
89 220	0.002 0.003	250.0 250.0	0.75	30.80	27.07 29.99	2.7	73.29	73.26 73.86	73.24 73.75	73.51 74.19	73.46 73.97	73.26 73.94	73.21 73.72
478	0.003	200.0	0.46	18.03	17.57	2.6	72.46	72.37	72.37	72.64	72.47	72.44	72.27
111	0.005	200.0	0.61	23.86	23.25	2.6	72.76	72.61	72.46	72.94	72.64	72.74	72.44
214	0.005	200.0	0.58	22.71	22.14	2.5	73.18	72.96	72.74	73.36	72.92	73.16	72.72
131 477	0.004 0.003	200.0 250.0	0.52 0.81	20.81 32.34	20.29 31.54	2.5 2.5	71.86 72.37	71.72 72.37	71.59 72.37	72.04 72.52	71.77 72.35	71.84 72.27	71.57 72.10
219	0.003	250.0	0.81	21.00	20.48	2.5	74.13	74.05	73.97	72.32	72.35	74.10	73.94
92	0.004	200.0	0.50	20.47	19.97	2.5	76.31	76.22	76.12	76.49	76.30	76.29	76.10
39	0.008	200.0	0.74	29.86	29.13	2.5	76.61	76.38	76.15	76.79	76.32	76.59	76.12
475	0.003	250.0	0.76	31.04	30.27	2.5	72.77	72.61	72.46	72.99	72.68	72.74	72.43
67 502	0.010 0.022	200.0 200.0	0.80 1.20	32.41 49.05	31.61 47.85	2.5 2.4	74.86 73.02	74.74 72.27	74.61 71.52	75.04 73.20	74.79 71.70	74.84 73.00	74.59 71.50
132	0.004	200.0	0.49	21.00	20.52	2.3	72.18	72.02	71.86	72.36	72.04	72.16	71.84
216	0.002	250.0	0.68	29.14	28.47	2.3	74.20	74.05	73.90	74.42	74.12	74.17	73.87
217	0.003	250.0	0.68	30.40	29.72	2.2	73.90	73.81	73.72	74.12	73.94	73.87	73.69
455 205	0.009 0.004	200.0 200.0	0.71 0.46	31.95 20.98	31.24 20.52	2.2 2.2	72.55 71.64	72.31 71.52	72.07 71.40	72.73 71.82	72.25 71.58	72.53 71.62	72.05 71.38
205 41	0.004	200.0	0.46 1.27	20.98 57.77	20.52 56.49	2.2	71.64	71.52	71.40	71.82	71.58	71.62	73.57
234	0.005	200.0	0.49	22.57	22.08	2.2	71.78	71.57	71.36	71.96	71.53	71.76	71.33
238	0.004	200.0	0.45	20.87	20.42	2.1	73.12	72.88	72.64	73.30	72.81	73.10	72.61
503 25	0.033	200.0	1.26	59.99 20.06	58.73	2.1	71.52	70.75	69.99 72.67	71.70	70.15	71.50	69.95 72.62
25 194	0.003 0.004	250.0 200.0	0.63 0.44	30.06 21.00	29.43 20.56	2.1 2.1	73.91 73.43	73.78 73.43	73.67 73.43	74.13 72.34	73.88 71.99	73.88 72.14	73.63 71.79
476	0.004	250.0	0.90	45.61	44.70	2.0	72.37	72.15	71.92	72.60	72.15	72.35	71.90
479	0.003	200.0	0.34	17.36	17.02	2.0	72.74	72.60	72.46	72.92	72.64	72.72	72.44
79	0.003	250.0	0.58	29.96	29.38	1.9	73.74	73.60	73.46	73.97	73.69	73.72	73.44
133 72	0.004 0.011	200.0 200.0	0.37 0.63	19.54 33.94	19.17 33.31	1.9 1.9	71.45 76.53	71.36 75.98	71.28 75.44	71.63 76.71	71.46 75.62	71.43 76.51	71.26 75.42
72 175	0.011	200.0	0.63	33.94 33.11	33.31 32.51	1.9	76.53 72.28	75.98 71.96	75.44 71.64	76.71	75.62 71.82	76.51	75.42
93	0.004	200.0	0.38	20.94	20.56	1.8	76.52	76.41	76.31	76.70	76.49	76.50	76.29
179	0.005	200.0	0.40	22.40	22.00	1.8	71.45	71.30	71.21	71.63	71.33	71.43	71.13
134	0.003	200.0	0.29	16.53	16.23	1.8	71.56	71.50	71.45	71.74	71.63	71.54	71.43
232 203	0.002 0.006	200.0 200.0	0.24 0.41	13.32 25.64	13.09 25.23	1.8 1.6	71.89 71.52	71.80 71.37	71.78 71.23	72.07 71.70	71.90 71.40	71.87 71.50	71.70 71.20
203 154	0.006	200.0	0.41	25.64 40.27	25.23 39.62	1.6	71.52	71.37	71.23	71.70	71.40	71.50	71.20
231	0.007	200.0	0.45	28.04	27.59	1.6	73.01	72.78	72.56	73.19	72.74	72.99	72.54
49	0.004	200.0	0.33	20.80	20.47	1.6	73.29	73.07	72.85	73.47	73.03	73.27	72.83
106	0.005	200.0	0.37	23.20	22.83	1.6	72.19	71.97	71.76	72.37	71.94	72.17	71.74
206 91	0.004 0.004	200.0 200.0	0.33 0.31	20.73 20.15	20.40 19.83	1.6 1.5	71.93 75.32	71.78 75.20	71.64 75.09	72.11 75.50	71.82 75.27	71.91 75.30	71.62 75.07
91 445	0.004	200.0	0.31	20.15	22.46	1.5	75.32	73.08	75.09	75.50	73.05	75.30	75.07
145	0.020	200.0	0.69	45.83	45.13	1.5	75.15	74.55	73.96	75.33	74.14	75.13	73.94
163	0.005	200.0	0.34	23.14	22.80	1.5	71.56	71.41	71.32	71.74	71.44	71.54	71.24
125 176	0.030 0.009	200.0	0.81	56.77 30.75	55.95 30.31	1.4 1.4	72.77 72.21	71.51 71.98	70.25 71.76	72.95 72.39	70.43 71.94	72.75 72 19	70.23 71 74
176 211	0.009	200.0 200.0	0.44 0.39	30.75 27.66	30.31 27.26	1.4 1.4	72.21 72.65	71.98 72.43	71.76 72.21	72.39 72.83	71.94 72.39	72.19 72.63	71.74 72.19
•										1	•		

Winchester.swc 11/6/2012 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley SewerCAD V8i (SELECTseries 2) [08.11.02.75] Page 2 of 3

FlexTable: Conduit Table (Winchester.swc) Active Scenario: Peaked Wet Weather Pumped - Existing

Current Time: 0.000 hours

j. 0 0.023 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 0.23 2000 <t< th=""><th>Label</th><th>Slope (m/m)</th><th>Diameter (mm)</th><th>Flow (L/s)</th><th>Capacity (Full Flow) (L/s)</th><th>Capacity (Excess Full Flow) (L/s)</th><th>Flow / Capacity (Design) (%)</th><th>Hydraulic Grade Line (In) (m)</th><th>Hydraulic Grade Line (Middle) (m)</th><th>Hydraulic Grade Line (Out) (m)</th><th>Elevation Crown (Start) (m)</th><th>Elevation Crown (Stop) (m)</th><th>Invert (Start) (m)</th><th>Invert (Stop) (m)</th></t<>	Label	Slope (m/m)	Diameter (mm)	Flow (L/s)	Capacity (Full Flow) (L/s)	Capacity (Excess Full Flow) (L/s)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (m)	Hydraulic Grade Line (Middle) (m)	Hydraulic Grade Line (Out) (m)	Elevation Crown (Start) (m)	Elevation Crown (Stop) (m)	Invert (Start) (m)	Invert (Stop) (m)
171 0.010 2.020 0.040 2.324 2.34 1.24 <th1.24< th=""> 1.24 1.24 <</th1.24<>														
121 0.006 9.02 1.40 7.44 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
18 0.001 2.000 6.50 5.244 7.44 7.135 7.454 7.60 7.145 7.121 7.137 <th7.137< th=""> <th7.137< th=""> <th7.137< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th7.137<></th7.137<></th7.137<>														
12 0.025 2.026 2.026 2.039 2.038 7.72 7.838 7.84														
190 2005 2000 6.23 40.44 10.24 72.43 72.44 77.45 75.0 75.0 75.00 <th7.00< th=""> <th75.00< th=""> <th7.00< th=""></th7.00<></th75.00<></th7.00<>		0.008	200.0				1.4	77.23				76.71	77.21	
121 0.054 2020 2520 9.40 11-22 15.3 7.562 7.564 <th7.56< th=""> <th7.56< th=""> <th7.56< th=""></th7.56<></th7.56<></th7.56<>	80	0.002	250.0				1.4		73.86	73.74		73.97	73.95	
PM Quoos Zuoo Zuoo <thzuoo< th=""> Zuoo Zuoo Z</thzuoo<>														
135 0.001 2000 0.25 22.92 20.66 1.3 71.4 71.45 71.40 71.41 <th71.41< th=""> <th71.41< th=""> <th71.41< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th71.41<></th71.41<></th71.41<>														
b 0mm 2mo 0ms 4.3m 1.3m 7.4m 1.4m 1.3m 7.4m 1.4m 7.3m 7.3m 7.3m 4mo 0mm 2mo 0mm 1.1m 1.1m 7.1m 7.3m 7.3m <th7.3m< th=""> <th7.3m< th=""> <th7.3m< th=""></th7.3m<></th7.3m<></th7.3m<>														
belo 0000 2000 001 10.00 10.0														
bit 0.0000 0.000 0.000	415	0.010	200.0	0.41				75.15			75.33	74.75	75.13	
mb 0.000 0.001 0.012 0.														
Interna Open Open <														
bbb 0.000 2000 0.20 25.210 27.14 77.50 77.14 77.55 77.12 77.14 77.55 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.14 77.30 77.13 77.14 77.30 77.13 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.14 77.30 77.44 77.30 77.44 77.30 77.44 77.30 77.44 77.30 77.44 77.30 77.44 77.30 77.44 77.30 77.44 77.30 77														
bef 0.000 0														
199 0.005 2000 0.20 22.20 22.80 1.1 74.18 73.90 73.10 73.40 73.10 73.40 73.10 73.40 73.10 <th73.10< th=""> <th73.10< th=""> <th73.10< t<="" td=""><td></td><td>0.005</td><td>200.0</td><td></td><td></td><td></td><td></td><td>72.93</td><td></td><td></td><td></td><td>72.70</td><td>72.92</td><td></td></th73.10<></th73.10<></th73.10<>		0.005	200.0					72.93				72.70	72.92	
1200 0.003 2003 0.01 20.47 71.47 71.24 71.24 71.40 71							1.1							
14 0.001 2000 0.21 2020 1.21 22.21 1.22 1.00 77.30 77.41 <td></td>														
bb 0.002 25.0 0.24 23.11 21.27 1.00 71.38 77.48 71.48 71.41 71.45 71.44 71.45 71.45 71.44 71.45 71.44 71.45 71.44 71.45 71.44 71.44 71.45 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 71.44 <th71.44< th=""> <th71.44< th=""> <th71.44< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th71.44<></th71.44<></th71.44<>														
194 0.004 2000 0.20 2001 1947 10 71.50 71.51 71.38 71.28 71.38 <td></td>														
nd 0.021 2020 0.047 47.36 1.00 7.66 77.46 77.45 77.46 77.46 77.46 77.46 77.46 77.45 <th77.45< th=""> <th77.45< th=""> <th77.45< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th77.45<></th77.45<></th77.45<>														
181 0.003 2000 0.016 18.18 18.18 71.68 71.68 71.68 71.68 71.68 71.68 71.68 71.68 71.68 72.89 72.89 72.89 72.85 72.30 72.38 72														
191 0.015 2020 0.03 15.44 15.54 15.04 15.05 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.55 15.45 17.17 17.44 17.18 17.14 17.15 17.55 17.56 17.54 17.44 17.15 17.55 17.56 17.44 17.14 17.15 17.15 17.44 17.15 17.15 17.44 17.15 17.26 17.45 17.44 17.16 17.44 17.16 17.44 17.16 17.44 17.45 17.44 17.45 17.44 17.45 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.44 17.46 17.45 17.46 17.45 17.46 17.45 17.46 17.														
121 0.002 2010 0.13 11.44 1.0 74.23 73.23 73.12 73.44 73.14 73.30 73.24 73.24 73.24 73.24 73.24 73.24 73.24 73.24 73.34 73.31 75.31 <th7.31< th=""> <th7.34< th=""> <th7.33< th=""></th7.33<></th7.34<></th7.31<>														
114 0.010 200 0.32 33.34 33.04 10 74.31 77.33 77.34 79.22 74.44 79.21 141 0.001 2000 0.20 21.40 21.20 0.9 71.73 71.64 71.56 71.91 71.41 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.71 71.72 77.60 73.50 72.61 73.50 72.61 73.50 72.71 73.51 72.61 73.50 71.71 71.63 75.21 71.41 71.83 74.61 75.83 75.21 71.41 71.83 74.81 74.81 74.83 74.81 74.83 74.81 74.83 74.81 74.83 74.81 74.81 74.83 74.81														
144 0.010 2010 0.31 33.24 33.92 0.94 75.31 77.44 77.51 77.51 77.31 77.31 77.31 77.31 77.31 77.34 77.31 77.34 77.31 77.34 <th77.34< th=""> <th77.34< th=""> <th77.34< <="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th77.34<></th77.34<></th77.34<>														
122 0.020 2000 0.42 46.86 46.16 0.9 72.85 72.60 73.86 73.80 72.248 72.81 153 0.241 2000 0.45 50.00 42.81 72.13 72.85 73.80 72.81 72.81 72.31 72.85 73.86				0.31	33.24	32.92			75.44	75.15	75.91			
1419 0.004 2000 0.19 21.46 0.29 72.21 72.25 72.30 72.32 77.34 153 0.024 2000 0.45 50.40 97.302 72.19 77.36 77.31 77.35 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.53 77.54 77.44 77.40 77.44 77.46 77.44 77.63 77.24 77.63 77.24 77.63 77.24 77.63 77.24 77.63 77.24 77.63 77.24 77.63 77.24 77.63 77.24 77.63														
155 0.024 20.00 0.45 59.40 49.09 0.9 73.02 72.19 71.36 72.17 71.54 73.01 71.34 74.44 77 0.013 200.0 0.31 37.41 37.11 0.8 75.57 75.41 75.57 75.54 75.57 75.54 75.77 75.44 72.11 71.79 75.46 72.14 71.79 75.77 76.46 72.44 72.46 72.14 71.75 77.42 76.73 77.42 76.73 77.42 76.73 77.42 76.73 77.42 76.73 77.42 76.73 77.42 76.73 77.44 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.25 72.42 73.25 72.42 73.25 73.44 73.08 73.41														
11 0.004 7000 0.111 7.20 0.03 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.53 7.54 7.44 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.63 7.72 7.73 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
D207 0.004 20.00 0.17 22.88 20.71 0.88 72.27 72.11 71.95 72.44 72.44 72.45 77.42 76.46 70 0.008 2000 0.23 27.76 27.86 0.00 77.43 77.99 77.42 76.93 77.42 76.76 71 0.001 2000 0.49 73.29 92.00 0.7 72.45 70.66 69.02 72.44 66.84 717 0.001 2000 0.49 73.29 72.40 73.34 72.44 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 72.42 73.35 73.35 73.35 73.35 73.35 73.35 73.35 73.42 73.43 73.43 73.43 73.43 73.45 73.41 73.45 73.41 73.45 73.41 73.45 73.41 73.45 73.41 73.45 73.41 73.45 73.41 73.45 73.41 73.45 <td></td>														
148 0.004 2000 0.16 19.99 19.83 0.88 76.49 76.46 76.42 76.62 76.74 76.62 76.63 77.62 76.64 76.64 76.74 76.65 77.64 76.65 77.64 76.65 77.64 77.71 70.61 112 0.004 2000 0.23 22.02 31.79 0.7 73.43 73.44 73.56 75.64 76.64 76.64														
10 0000 2000 022 27.6 19.23 0.08 77.43 77.90 17.52 17.42 17.63 17.71 17.00 117 0.061 2000 0.69 37.9 92.60 0.7 72.45 70.66 640.0 27.24 66.84 117 0.010 2000 0.30 41.03 40.73 0.7 73.34 73.43 73.43 72.44 66.84 128 0.010 2000 0.30 41.03 40.73 0.7 71.44 71.22 71.23 71.24 71.35 72.64 73.55 75.65 75.85 75.65 75.65 75.64 75.75 73.86 75.49 74.12 74.17 74.23 74.24 74.23 74.26 74.28 74.26 74.28 74.24 74.28 74.26 74.28 74.21 74.23 74.24 74.21 74.23 74.24 74.21 74.28 74.28 74.28 74.28 74.28 74.28 74.28														
b0 0.004 2000 0.10 19.80 19.80 0.88 70.78 70.70 70.02 70.74 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70.73 73.44 73.41 73.44														
112 0.081 200.0 0.49 99.2.0 0.7 72.45 70.65 640.2 72.44 66.84 195 0.016 200.0 0.33 340.3 0.7 73.43 73.43 73.43 73.43 71.82 72.24 73.55 71.62 73.55 72.42 73.55 73.65 73.66 73.65 73.66 73.65 73.61 73.63 74.23 73.25 74.21 73.25 74.24 73.25 74.23 73.35 74.21 73.55 74.51 74.61 73.55 74.51 73.55 74.51 73.55 74.51 73.55 74.51 73.55 74.51 73.55 74.51 73.55 75.50 75.50 75.50 75.50														
156 0.016 20.00 0.30 41.03 0.07 73.36 72.90 73.35 74.23 73.35 74.23 73.35 74.23 73.35 74.23 73.35 74.23 73.35 74.24 77.13 77.55 75.60 75.61 76.61 77.53 74.42 77.13 77.63 76.81 <th76.81< th=""> 76.81 76.8</th76.81<>														
128 0.004 20.00 0.15 20.61 0.7 71.44 71.29 71.41 71.33 71.43 71.33 71.43 71.33 71.43 71.33 71.43 71.33 71.43 71.33 71.43 71.33 71.43 71.33 71.43 73.98 72.90 128 0.004 200.0 0.24 34.13 20.60 0.7 77.42 77.13 77.62 77.22 77.42 77.12 77.52 77.22 77.42 77.12 77.53 77.64 77.61 75.64 76.39 76.31 76.65 76.61 76.61 76.61 76.67 76.66 76.64 77.51 77.61 77.63 76.64 76.97 77.64 77.61 76.67 76.67 76.67 76.67 76.67 76.67 76.67 77.67 77.64 77.61 77.61 77.67 77.64 77.60 77.67 77.44 77.67 77.64 77.60 77.47 77.48 77.428 77.47 77.48	197	0.010	200.0					73.43				71.82	72.23	71.62
128 0.010 250.0 0.42 59.96 0.7 74.00 73.41 72.22 74.23 73.05 73.96 73.9														
122 0.011 2000 0.24 34.13 33.88 0.7 76.90 76.10 75.81 76.80 76.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.81 76.23 77.32 77.32 77.32 77.32 77.32 77.32 77.32 77.32 77.32 77.32 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.33 77.34 <th77.34< th=""> <th77.34< th=""> <th77.34< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th77.34<></th77.34<></th77.34<>														
1218 0.003 250.0 0.21 30.12 29.91 0.7 74.29 74.15 74.10 74.53 74.25 77.02 77.32 77.42 77.12 225 0.010 200.0 0.23 32.21 32.59 0.7 76.66 76.39 76.12 76.65 76.31 76.65 76.31 76.65 76.31 76.65 76.31 76.65 76.51 76.66 76.54 77.64 77.00 77.72 77.73 77.75 77.60 77.75 76.65 75.64 76.54 77.64 77.00 77.75 77.65 75.60 75.85 75.60 75.85 75.60 75.86 75.60 75.87 77.05 72.67 77.72 77.74 77.44 77.40 77.43 73.43 73.44 73.43 73.44 73.43 73.44 73.43 73.44 73.43 73.44 73.48 72.48 71.49 74.44 75.00 75.4 75.14 75.16 75.50 75.51 75.50														
15 0.004 200.0 0.14 20.7 77.48 77.28 77.12 77.42 77.42 77.42 225 0.010 200.0 0.23 32.81 32.59 0.7 76.69 76.39 76.11 76.65 76.65 76.61 76.65 76.61 76.65 76.61 76.65 76.61 76.65 76.61 76.65 76.61 76.65 76.61 76.65 76.61 76.65 75.60 75.60 75.60 75.60 75.60 75.60 75.60 75.66 77.78 73.61 73.64 73.61 73.66 73.78 73.66 73.78 73.66 73.78 73.66 73.78 73.66 73.78 73.66 73.78 73.66 73.78 73.66 73.78 73.46 74.22 71.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42 74.42														
126 0.010 2200 0.22 32.49 32.27 0.7 74.62 73.46 73.35 74.21 73.44 74.01 73.34 95 0.004 2000 0.14 20.73 20.59 0.7 75.66 75.74 75.46 77.65 75.80 75.85 75.65 149 0.000 200.0 0.11 27.08 26.90 0.7 73.73 73.43 73.43 73.43 73.48 73.46 73.78 73.78 73.48 73.43 73.48 71.47 71.47 73.69 73.78 73.48 73.43 73.48 71.47 71.47 73.42 73.48 72.48 71.99 72.28 71.19 72.48 73.29 72.48 75.20 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.53 75.51 75.53 75	75	0.004												
95 0.004 2000 0.14 20.73 20.59 0.7 76.82 76.84 77.64 77.01 76.37 75.80 73.82 73.46 195 0.010 0.000 0.22 32.99 32.76 0.7 74.76 74.24 75.00 74.47 74.75 74.22 71.90 72.85 73.48 73.46 72.85 73.24 75.80 74.47 74.75 74.22 72.85 73.44 74.55 74.22 73.46 72.45 72.45 72.45 72.45 72.45 72.45 72.45 72.45 73.47 73.84 73.56 75.50 75.50 75.46														
123 0.004 2000 0.11 20.45 20.31 0.7 75.86 75.40 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 75.80 77.85 77.80 77.80 77.80 77.80 77.80 77.85 77.80 77.86 73.78 73.83 73.43 73.43 73.43 73.43 73.43 73.44 77.47 74.47														
149 0.009 200.0 0.21 31.25 31.05 0.7 77.81 77.44 77.06 78.00 77.25 77.80 77.36 229 0.007 200.0 0.22 32.98 32.76 0.7 73.43 73.43 73.44 71.99 73.28 73.28 73.28 73.43 74.48 71.99 73.28 73.28 73.28 73.28 73.28 72.28 71.92 72.45 72.10 72.28 71.10 72.55 75.21 72.10 72.38 72.11 72.50 75.21 75.11 75.50 75.51 75.00 90 0.004 200.0 0.13 21.13 21.00 0.6 72.29 75.20 75.11 75.50 75.51 75.00 17 0.005 200.0 0.13 22.26 22.12 0.6 72.54 75.41 75.31 75.31 75.34 71.93 72.88 71.13 72.18 71.14 170 0.004 200.0														
195 0.010 200.0 0.22 32.98 32.76 0.7 73.43 73.44 74.75 74.75 74.75 74.75 74.75 74.26 72.64 73.44 72.85 73.28 72.45 72.65 75.71 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.30 71.74 72.88 72.14 72.18 71.13 72.65 71.53 72.88 72.14 72.88 73.24 72.88 73.04 72.65 75.30 75.30 75.30 75.30 75.30 75.30 75.30 75.30 75.33 75.43 75.49 75.44 75.47 75.63 75.53 75.14 75.03 75.29 73.2														
28 0.005 250.0 0.28 42.97 42.69 0.7 74.76 74.50 74.24 75.00 74.47 74.75 74.22 174 0.009 200.0 0.21 31.65 31.44 0.7 73.29 72.98 72.67 73.48 73.28 72.65 208 0.004 200.0 0.13 21.13 21.00 0.6 75.52 75.42 75.32 75.71 75.50 75.51 75.51 17 0.005 200.0 0.13 22.26 22.12 0.6 72.93 71.87 71.35 71.53 71.53 71.53 71.53 71.53 75.44 73.70 73.21 73.01 73.21														
174 0.009 200.0 0.21 31.65 31.44 0.7 73.29 72.98 72.67 73.48 72.85 73.28 72.65 208 0.004 200.0 0.16 25.43 22.7 0.6 72.65 75.20 75.11 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.00 75.51 77.50 75.51 77.34 72.88 71.33 72.38 71.33 72.38 71.35 72.38 71.30 72.34 72.69 73.24 72.69 73.24 72.69 73.24 73.69 73.53 73.64 75.29 73.24 75.69 75.43 171 0.004 200.0 0.16 31.23 31.07 0.5 77.55 75.64 74.50														
208 0.000 200.0 0.16 25.27 0.6 72.26 72.09 71.29 72.45 72.10 72.57 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.50 75.51 75.51 75.50 75.51 75.40 75.54 75.41 75.21 75.31 75.33 75.33 75.33 75.31 75.31 75.30 73.32 73.00 73.24 73.50 73.34 73.41 73.37 73.34 73.34 73.34 73.37 73.37 73.37 73.37 73.37 73.37 73.37 73.37 <th73.37< th=""> <th73.37< th=""> <th73.37< <="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th73.37<></th73.37<></th73.37<>														
90 0.004 200.0 0.13 21.13 21.00 0.6 75.52 75.42 75.32 75.71 75.50 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 75.51 71.33 172 0.005 200.0 0.17 29.52 29.35 0.6 73.05 72.66 72.67 73.24 72.85 73.04 72.55 71 0.004 200.0 0.11 19.80 19.69 0.6 75.54 75.41 75.37 75.63 75.53 75.43 75.64 73.00 73.24 73.05 73.04 74.04 74.04 74.06 73.02 75.29 73.21 75.07 73.04 74.69 70.41 76.49 73.01 73.41 73.37 73.21 73.17 74.44 0.017 20.00 0.018 36.54 36.36 0.5 74.72 74.36 74.00 74.91 74.18 74.71 73.93 75.85 75.14 76.														
235 0.015 20.00 0.23 39.80 39.56 0.6 72.39 71.87 71.36 72.58 71.53 72.38 71.33 72.38 73.34 72.38 73.34 72.38 73.34 72.38 73.34 72.38 73.34 72.38 73.34 75.33 75.43 171 0.007 200.0 0.16 28.37 28.21 0.5 73.51 73.28 73.05 73.70 73.24 73.50 73.01 151 0.026 20.00 0.07 13.45 13.39 0.5 73.22 73.02 73.18 73.41 73.37 73.21 75.49 75.14 147 0.002 20.00 0.16 31.23 31.07 0.5 77.15 76.8 76.00 77.41 74.38 74.00 74.14 73.37 73.21 73.17 75.60 75.14 76.00 75.33 75.13 73.62 77.33 75.60 75.14 76.00 75.33 75.13 73.96 <td></td>														
172 0.008 200.0 0.17 29.52 29.35 0.6 73.05 72.86 72.67 73.24 72.85 73.04 72.65 71 0.004 200.0 0.11 19.80 19.69 0.6 75.51 75.44 75.73 75.23 75.53 75.53 75.53 75.53 75.53 75.53 75.53 75.53 75.53 75.53 75.53 75.05 73.05 73.00 73.24 75.69 77.04 76.49 77.04 76.49 77.04 76.50 77.24 76.69 77.04 76.49 77.04 76.50 77.24 76.69 77.04 76.49 73.01 73.37 73.21 73.01 73.21 73.17 73.44 73.05 73.44 73.05 73.41 73.37 73.21 73.17 73.64 74.00 74.01 74.14 73.37 73.21 75.71 75.73 76.70 77.03 76.50 75.14 76.05 75.33 75.65 75.13 76.00														
71 0.004 2000 0.11 19.80 19.69 0.6 75.54 75.49 75.44 75.73 75.63 75.53 75.33 171 0.007 200.0 0.16 28.37 28.21 0.5 73.51 73.28 73.05 73.07 73.24 73.50 73.04 151 0.002 200.0 0.16 31.23 31.07 0.5 77.05 76.78 76.50 77.24 76.69 77.04 76.49 212 0.002 200.0 0.16 31.23 31.07 0.5 73.22 73.20 73.18 73.41 73.37 73.21 73.17 444 0.012 200.0 0.15 32.27 32.12 0.5 75.86 75.50 75.14 76.69 77.03 76.50 20 0.014 200.0 0.15 33.77 33.62 0.4 77.04 76.77 76.52 77.23 76.00 77.03 76.50 21 0.000														
171 0.007 200.0 0.16 28.37 28.21 0.5 73.51 73.28 73.05 73.70 73.24 73.50 73.01 151 0.026 200.0 0.29 52.73 52.45 0.5 75.10 74.06 73.02 75.29 73.21 75.09 73.21 75.09 73.21 75.17 147 0.002 200.0 0.07 13.45 13.39 0.5 77.22 73.20 73.81 73.41 73.37 73.21 73.17 444 0.012 200.0 0.18 36.54 36.36 0.5 74.72 74.36 74.00 74.91 74.18 74.71 73.98 20 0.014 200.0 0.15 32.27 32.12 0.5 75.66 75.50 75.14 74.60 74.14 73.35 73.94 73.15 20 0.014 20.0 0.15 33.77 33.62 0.4 77.67 76.52 77.23 76.00 74.21<														
151 0.026 2000 0.29 52.73 52.45 0.5 75.10 74.06 73.02 75.29 73.21 75.09 73.01 147 0.009 200.0 0.16 31.23 31.07 0.5 77.05 76.78 76.50 77.24 76.69 77.04 76.49 212 0.002 200.0 0.07 13.45 13.39 0.5 73.22 73.20 73.18 73.41 73.37 73.21 73.73 444 0.012 200.0 0.18 36.54 36.66 0.5 74.22 74.36 74.01 74.18 74.71 73.98 82 0.010 200.0 0.17 38.31 38.14 0.4 73.95 73.55 73.16 74.14 73.35 73.94 73.15 94 0.011 200.0 0.24 54.93 54.69 0.4 74.67 73.97 75.00 74.21 74.75 73.96 417 0.005 200.0														
212 0.002 200.0 0.07 13.45 13.39 0.5 73.22 73.20 73.18 73.41 73.37 73.21 73.17 444 0.012 200.0 0.18 36.54 36.36 0.5 74.72 74.36 74.00 74.91 74.18 74.11 73.38 82 0.010 200.0 0.15 32.27 32.12 0.5 75.86 75.50 75.14 76.55 75.35 73.16 74.14 73.35 73.94 73.15 94 0.011 200.0 0.15 33.77 33.62 0.4 77.04 76.77 76.52 77.23 76.70 77.33 76.50 27 0.009 250.0 0.24 54.93 54.69 0.4 71.62 71.62 71.60 71.41 71.35 73.96 417 0.005 200.0 0.09 21.27 21.18 0.4 75.29 75.14 76.03 75.33 75.83 75.13	151		200.0	0.29	52.73	52.45	0.5	75.10	74.06	73.02	75.29	73.21	75.09	73.01
444 0.012 200.0 0.18 36.54 36.36 0.5 74.72 74.36 74.00 74.91 74.18 74.71 73.98 82 0.010 200.0 0.15 32.27 32.12 0.5 75.86 75.50 75.14 76.05 75.33 75.85 75.13 94 0.011 200.0 0.15 33.77 33.62 0.4 77.07 76.52 77.23 76.70 77.03 76.50 27 0.009 250.0 0.24 54.93 54.69 0.4 71.62 71.62 71.60 71.47 73.96 417 0.005 200.0 0.09 22.19 22.10 0.4 71.62 71.62 71.60 71.47 73.96 417 0.005 200.0 0.09 21.27 21.18 0.4 76.39 76.19 76.58 76.38 76.38 76.38 76.38 76.38 76.38 75.35 73.10 74.00 75.76 74.25<														
820.010200.00.1532.2732.120.575.8675.5075.1476.0575.3375.8575.13940.011200.00.1738.3138.140.473.9573.5573.1674.1473.3573.9473.15940.011200.00.1533.7733.620.477.0476.7776.5277.2376.7077.0376.50270.009250.00.2454.9354.690.471.6271.6271.6271.6071.5471.4071.34760.004200.00.0922.1922.100.476.3976.2976.1976.5876.3876.3876.381500.018200.00.0921.2721.180.475.8475.4975.1476.0375.3375.8375.13860.015250.00.3072.9772.680.471.5274.7774.0275.674.2571.4371.321520.019200.00.0720.4320.360.471.4271.3871.3574.2573.3574.251530.018250.00.58192.31191.730.373.3273.2973.5674.4573.5574.2573.351540.003200.00.0518.4218.370.371.5271.7071.6571.9471.8471.7471.641540.003200.00.07														
200.014200.00.1738.3138.140.473.9573.5573.1674.1473.3573.9473.15940.011200.00.1533.7733.620.477.0476.7776.5277.2376.0077.0376.50270.009250.00.2454.9354.690.474.7674.3773.9775.0074.2174.7573.964170.005200.00.0922.1922.100.471.6271.6271.6071.6375.3375.8375.13760.018200.00.1843.9343.750.475.8475.4975.1476.0375.3375.8375.13860.015250.00.3072.9772.680.471.5274.7774.0275.7674.2575.5174.00570.004200.00.0720.4320.360.471.4471.3871.3471.6371.5271.4371.321520.019200.00.1544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.58192.31191.730.371.5271.7071.6571.9471.8471.741800.003200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.741800.005200.00.07														
940.011200.00.1533.7733.620.477.0476.7776.5277.2376.7077.0376.50270.009250.00.2454.9354.690.474.7674.3773.9775.0074.2174.7573.964170.005200.00.0922.1922.100.471.6271.6271.6271.6071.5471.4071.34760.004200.00.0921.2721.180.476.3976.2976.1976.5876.3875.3375.3375.131500.018200.00.1843.9343.750.475.8475.4975.1476.0375.3375.3375.3375.13860.015250.00.3072.9772.680.475.2471.3871.3471.6371.5271.4371.321520.019200.00.0544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.0518.4218.370.371.7571.7071.6571.9471.9472.9172.741800.003200.00.0723.0422.970.372.9272.8373.3173.2372.4373.3373.2372.4373.3373.2372.4373.4373.0372.231800.003200.00.0732.7732.0037.3372.43														
4170.005200.00.0922.1922.100.471.6271.6271.6271.6071.5471.4071.34760.004200.00.0921.2721.180.476.3976.2976.1976.5876.3876.3876.3876.381500.018200.00.1843.9343.750.475.8475.4975.1476.0375.3375.3375.3375.13860.015250.00.3072.9772.680.471.4471.3871.3471.6371.5275.5174.00570.004200.00.0720.4320.360.471.4471.3871.3471.6371.5271.4371.321520.019200.00.1544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.58192.31191.730.371.7571.7071.6571.4171.4471.64540.003200.00.0723.0422.970.372.9272.8372.7573.1171.4671.4771.64540.010200.00.0732.8732.780.371.9171.6871.4373.2372.4373.2372.4373.2372.4373.2372.4373.2372.4373.2372.4373.2372.4373.2372.4373.4373.4373.4373.4373.43	94	0.011	200.0	0.15	33.77	33.62	0.4	77.04	76.77	76.52	77.23	76.70	77.03	76.50
760.004200.00.0921.2721.180.476.3976.2976.1976.5876.3876.3876.3876.3876.181500.018200.00.1843.9343.750.475.8475.4975.1476.0375.3375.3375.3375.13860.015250.00.3072.9772.680.475.5274.7774.0275.7674.2575.5174.00570.004200.00.0720.4320.360.471.4471.3871.3471.6371.5271.4371.321520.019200.00.1544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.58192.31191.730.373.3273.2973.5672.5473.3172.291800.003200.00.0518.4218.370.371.7571.7071.6571.9471.8471.7471.64540.005200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.744180.010200.00.0732.2732.200.272.6772.4072.1372.8672.3272.6672.121990.021200.00.0732.2732.200.273.4673.1973.4673.2373.6673.1273.4672.92 <td></td>														
1500.018200.00.1843.9343.750.475.8475.4975.1476.0375.3375.3375.3375.13860.015250.00.3072.9772.680.475.5274.7774.0275.7674.2575.5174.00570.004200.00.0720.4320.360.471.4471.3871.3471.6371.5271.4371.321520.019200.00.1544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.58192.31191.730.373.3273.2973.2973.5672.5473.3172.291800.003200.00.0518.4218.370.371.7571.7071.6571.9471.8471.7471.64540.005200.00.0723.0422.970.372.9272.8372.2573.1172.9472.9172.744180.010200.00.0732.2732.200.272.6772.4072.1372.8672.3272.6672.121700.020200.00.0845.8945.810.273.4673.1971.2870.7171.0870.511700.020200.00.0640.9440.880.271.0970.8070.5471.2870.7171.0870.511700.020200.0<														
860.015250.00.3072.9772.680.475.5274.7774.0275.6674.2575.5174.00570.004200.00.0720.4320.360.471.4471.3871.3471.6371.5271.4371.321520.019200.00.1544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.58192.31191.730.373.3273.2973.2973.5672.5473.3172.291800.003200.00.0518.4218.370.371.7571.7071.6571.9471.8471.7471.64540.005200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.744180.010200.00.0732.2732.080.371.4373.4373.4373.2372.4373.0372.231990.021200.00.0732.2732.000.272.6772.4072.1372.8672.3272.6672.121700.020200.00.0845.8945.810.273.4673.1971.2870.7171.0870.511700.020200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.00 </td <td></td>														
570.004200.00.0720.4320.360.471.4471.3871.3471.6371.5271.4371.321520.019200.00.1544.8444.680.374.2673.8173.3674.4573.5574.2573.35880.105250.00.58192.31191.730.373.3273.2973.2973.6672.5473.3172.291800.003200.00.0518.4218.370.371.7571.7071.6571.9471.8471.7471.64540.005200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.744180.010200.00.0932.8732.780.371.9171.6871.6272.1071.6571.9071.451990.021200.00.1247.1547.030.373.4373.4373.4373.2372.4373.0372.232100.010200.00.0732.2732.200.272.6772.4072.1372.8673.2272.6672.121700.020200.00.0845.8945.810.273.4673.1972.9373.6673.1273.4672.924410.016200.00.0640.9440.880.271.0970.8070.5471.2870.7171.0870.512330.015200.0														
880.105250.00.58192.31191.730.373.3273.2973.2973.5672.5473.3172.291800.003200.00.0518.4218.370.371.7571.7071.6571.9471.8471.7471.64540.005200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.744180.010200.00.0932.8732.780.371.9171.6871.6272.1071.6571.9071.451990.021200.00.1247.1547.030.373.4373.4373.4373.2372.4373.0372.232100.010200.00.0732.2732.200.272.6772.4072.1372.8672.3272.6672.121700.020200.00.0845.8945.810.273.4673.1971.2870.7171.0870.512330.015200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.2377.1377.3177.3377.11	57	0.004	200.0	0.07	20.43	20.36	0.4	71.44	71.38	71.34	71.63		71.43	71.32
1800.003200.00.0518.4218.370.371.7571.7071.6571.9471.8471.7471.64540.005200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.744180.010200.00.0932.8732.780.371.9171.6871.6272.1071.6571.9071.451990.021200.00.1247.1547.030.373.4373.4373.4373.2372.4373.0372.232100.010200.00.0732.2732.200.272.6772.4072.1372.8672.3272.6672.121700.020200.00.0845.8945.810.273.4673.1972.9373.6673.1273.4672.924410.016200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.2377.1377.3177.3377.11														
540.005200.00.0723.0422.970.372.9272.8372.7573.1172.9472.9172.744180.010200.00.0932.8732.780.371.9171.6871.6272.1071.6571.9071.451990.021200.00.1247.1547.030.373.4373.4373.4373.2372.4373.0372.232100.010200.00.0732.2732.200.272.6772.4072.1372.8672.3272.6672.121700.020200.00.0845.8945.810.273.4673.1972.9373.6673.1273.4672.924410.016200.00.0640.9440.880.271.0970.8070.5471.2870.7171.0870.512330.015200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.3377.1377.3377.11														
418 0.010 200.0 0.09 32.87 32.78 0.3 71.91 71.68 71.62 72.10 71.65 71.90 71.45 199 0.021 200.0 0.12 47.15 47.03 0.3 73.43 73.43 73.23 72.43 73.03 72.23 210 0.010 200.0 0.07 32.27 32.20 0.2 72.67 72.40 72.13 72.86 72.32 72.66 72.12 170 0.020 200.0 0.08 45.89 45.81 0.2 73.46 73.19 72.93 73.66 73.12 73.46 72.92 441 0.016 200.0 0.06 40.94 40.88 0.2 71.09 70.80 70.54 71.28 70.71 71.08 70.51 233 0.015 200.0 0.05 39.52 39.47 0.1 72.12 71.91 71.78 72.32 71.90 72.12 71.70 71.41 71.90 72.														
1990.021200.00.1247.1547.030.373.4373.4373.2372.4373.0372.232100.010200.00.0732.2732.200.272.6772.4072.1372.8672.3272.6672.121700.020200.00.0845.8945.810.273.4673.1972.9373.6673.1273.4672.924410.016200.00.0640.9440.880.271.0970.8070.5471.2870.7171.0870.512330.015200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.2377.1377.5377.3177.3377.11														
1700.020200.00.0845.8945.810.273.4673.1972.9373.6673.1273.4672.924410.016200.00.0640.9440.880.271.0970.8070.5471.2870.7171.0870.512330.015200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.2377.1377.5377.3177.3377.11	199	0.021	200.0	0.12	47.15	47.03	0.3	73.43	73.43	73.43	73.23	72.43	73.03	72.23
4410.016200.00.0640.9440.880.271.0970.8070.5471.2870.7171.0870.512330.015200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.2377.1377.5377.3177.3377.11														
2330.015200.00.0539.5239.470.172.1271.9171.7872.3271.9072.1271.701190.014200.00.0039.0239.020.077.3377.2377.1377.5377.3177.3377.11														
119 0.014 200.0 0.00 39.02 39.02 0.0 77.33 77.13 77.53 77.31 77.33 77.11														

APPENDIX 'G'

Future Peak Wet Weather Flow Summary Table and Schematic

FlexTable: Conduit Table (Winchester.swc) Active Scenario: Future - Peak Wet Weather Pumped

Current Time: 0.000 hours

Label	Slope (m/m)	Diameter (mm)	Flow (L/s)	Capacity (Full Flow) (L/s)	Capacity (Excess Full Flow) (L/s)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (m)	Hydraulic Grade Line (Middle) (m)	Hydraulic Grade Line (Out) (m)	Elevation Crown (Start) (m)	Elevation Crown (Stop) (m)	Invert (Start) (m)	Invert (Stop) (m)
45	0.004	200.0	47.90	20.18	-27.72	237.4	73.02	72.76	72.51	72.61	72.52	72.41	72.32
47 48	0.004 0.004	200.0 200.0	40.96 40.74	21.00 21.95	-19.96 -18.80	195.0 185.7	74.83 75.79	74.36 75.31	73.88 74.83	73.23 73.51	72.98 73.23	73.03 73.31	72.78 73.03
40 96	0.004	200.0	60.89	35.80	-18.80	170.1	78.98	75.31	74.83	78.01	75.23	77.76	77.63
46	0.006	200.0	41.43	26.34	-15.08	157.3	73.88	73.45	73.02	72.98	72.63	72.78	72.43
97	0.004	250.0	61.26	39.32	-21.94	155.8	78.61	77.97	77.33	77.88	77.36	77.63	77.11
450	0.002	250.0	35.42	26.25	-9.18	135.0	71.56	71.39	71.22	71.40	71.21	71.15	70.96
182	0.002	250.0	30.75	25.56	-5.19	120.3	71.62	71.55	71.49	71.63	71.54	71.38	71.29
186 CO-4	0.002 0.004	250.0 250.0	30.07 36.89	28.08 37.61	-2.00 0.72	107.1 98.1	71.72 71.16	71.67 71.16	71.62 71.16	71.72 71.21	71.63 71.21	71.47 70.96	71.38 70.96
177	0.004	250.0	31.20	32.85	1.66	95.0	71.10	71.10	71.01	71.27	71.07	70.90	70.90
185	0.003	250.0	30.06	31.86	1.80	94.4	71.73	71.73	71.72	71.77	71.72	71.52	71.47
160	0.003	250.0	32.40	34.68	2.28	93.4	71.01	70.86	70.70	71.07	70.76	70.82	70.51
184	0.003	250.0	30.06	32.70	2.64	91.9	71.87	71.79	71.73	71.93	71.77	71.68	71.52
178 188	0.003 0.003	250.0 250.0	30.75 29.40	35.17 33.85	4.42 4.45	87.4 86.9	71.39 72.10	71.29 72.02	71.21 71.94	71.46 72.17	71.25 72.01	71.21 71.92	71.00 71.76
126	0.003	600.0	105.12	141.63	36.51	74.2	69.86	69.85	69.83	70.08	70.05	69.48	69.45
98	0.028	250.0	61.56	98.71	37.15	62.4	77.23	75.99	74.76	77.33	74.87	77.08	74.62
109	0.001	600.0	110.07	204.77	94.70	53.8	69.17	69.16	69.15	69.46	69.44	68.86	68.84
110	0.001	600.0	110.76	234.46	123.71	47.2	69.07	69.05	69.03	69.38	69.34	68.78	68.74
99 100	0.057 0.002	250.0 600.0	61.81 105.04	141.51 267.78	79.70 162.74	43.7 39.2	74.73 69.86	72.23 69.89	69.86 69.86	74.87 70.16	69.86 70.08	74.62 69.56	69.61 69.48
15	0.002	250.0	7.68	19.89	12.20	38.6	70.09	70.07	70.06	70.10	70.00	69.98	69.95
143	0.002	450.0	43.16	113.96	70.80	37.9	69.96	69.89	69.86	70.22	70.07	69.77	69.62
107	0.002	600.0	108.21	290.20	181.99	37.3	69.37	69.29	69.21	69.72	69.56	69.12	68.96
108 103	0.002 0.002	600.0 600.0	108.26 106.82	292.07 294.99	183.81 188.17	37.1 36.2	69.21 69.51	69.18 69.44	69.17 69.37	69.56 69.86	69.46 69.72	68.96 69.26	68.86 69.12
103 141	0.002	600.0 450.0	106.82 41.86	294.99 125.78	188.17 83.92	36.2 33.3	69.51 70.19	69.44 70.08	69.37 69.98	69.86 70.46	69.72 70.25	69.26 70.01	69.12 69.80
142	0.002	450.0	42.75	145.10	102.35	29.5	69.97	69.97	69.96	70.25	70.23	69.80	69.77
101	0.004	600.0	106.62	372.71	266.09	28.6	69.63	69.55	69.51	70.01	69.86	69.41	69.26
9a 140	0.001	250.0	5.92	20.73	14.81 110.72	28.6 25.1	71.41	71.40	71.38	71.57	71.54	71.32	71.29
140 35	0.003 0.004	450.0 200.0	40.06 4.84	159.79 20.10	119.73 15.27	25.1 24.1	70.64 70.25	70.46 70.04	70.28 69.87	70.94 70.38	70.58 69.97	70.49 70.18	70.13 69.77
223	0.004	200.0	4.71	19.66	14.95	24.0	73.87	73.75	73.64	76.00	73.77	73.80	73.57
51	0.004	200.0	4.41	19.59	15.18	22.5	70.52	70.39	70.26	70.66	70.40	70.46	70.20
CO-3	0.060	300.0	52.74	236.87	184.13	22.3	69.87	69.85	69.84	70.07	70.04	69.77	69.74
12 156	0.003 0.001	250.0 300.0	6.50 5.22	32.97 28.60	26.46 23.38	19.7 18.2	70.78 71.28	70.61 71.25	70.44 71.23	70.95 71.49	70.61 71.44	70.70 71.19	70.36 71.14
CO-1	0.001	600.0	110.76	614.01	503.25	18.0	68.90	68.90	68.90	69.33	69.33	68.73	68.73
422	0.001	200.0	1.67	9.44	7.77	17.7	74.01	73.97	73.92	74.15	74.07	73.95	73.87
11	0.004	250.0	6.27	36.91	30.64	17.0	71.06	70.91	70.78	71.24	70.95	70.99	70.70
449 52	0.003 0.004	250.0 200.0	5.11 3.35	30.14 19.80	25.03 16.46	17.0 16.9	71.57 70.66	71.57 70.59	71.56 70.52	71.66 70.80	71.40 70.66	71.41 70.60	71.15 70.46
448	0.004	250.0	4.76	28.32	23.56	16.8	70.00	70.57	70.52	70.00	70.00	71.66	70.40
14	0.006	250.0	7.68	45.85	38.17	16.8	70.25	70.11	70.09	70.43	70.16	70.18	69.91
10	0.004	250.0	6.13	38.08	31.95	16.1	71.36	71.21	71.06	71.54	71.24	71.29	70.99
55 224	0.004 0.008	200.0 200.0	3.14 4.76	19.85 30.14	16.71 25.38	15.8 15.8	71.09 73.62	70.97 73.36	70.85 73.10	71.24 73.77	71.00 73.25	71.04 73.57	70.80 73.05
53	0.008	200.0	3.28	21.00	17.72	15.6	70.82	70.74	70.66	70.97	70.80	70.77	70.60
34	0.003	250.0	4.68	31.70	27.02	14.8	73.02	73.02	73.02	73.05	72.72	72.80	72.47
33	0.003	250.0	4.40	30.07	25.67	14.6	73.04	73.06	73.02	73.23	73.05	72.98	72.80
5 32	0.002 0.003	250.0 250.0	3.49 4.23	24.88 30.92	21.39 26.69	14.0 13.7	72.64 73.21	72.62 73.14	72.60 73.06	72.83 73.40	72.79 73.25	72.58 73.15	72.54 73.00
56	0.003	200.0	2.95	21.78	18.83	13.5	71.34	71.21	73.00	71.49	71.24	71.29	71.04
8	0.004	250.0	4.89	36.35	31.46	13.4	71.98	71.82	71.66	72.17	71.85	71.92	71.60
58	0.004	200.0	2.73	20.70	17.97	13.2	71.58	71.47	71.37	71.73	71.52	71.53	71.32
222 9	0.003 0.005	200.0 250.0	2.35 4.97	18.56 40.61	16.22 35.64	12.6 12.2	74.22 71.66	74.05 71.52	73.89 71.41	74.37 71.85	74.04 71.57	74.17 71.60	73.84 71.32
, 158	0.003	300.0	5.61	40.81	40.26	12.2	70.80	70.69	70.64	71.03	70.81	70.73	70.51
18	0.004	200.0	2.69	21.98	19.30	12.2	72.30	72.13	72.10	72.45	72.12	72.25	71.92
60 7	0.003	200.0	2.14	17.49	15.36	12.2	71.99	71.91	71.84	72.14	71.99	71.94	71.79
7 161	0.004 0.002	250.0 200.0	4.37 1.92	35.84 15.83	31.47 13.91	12.2 12.1	72.29 71.32	72.13 71.18	71.98 71.04	72.48 71.47	72.17 71.20	72.23 71.27	71.92 71.00
13	0.002	200.0 250.0	6.50	54.23	47.73	12.1	71.32	70.33	71.04	71.47	70.43	70.36	70.18
21	0.004	200.0	2.34	19.60	17.26	11.9	72.85	72.70	72.56	73.01	72.71	72.81	72.51
31	0.003	250.0	3.49	30.33	26.84	11.5	73.45	73.36	73.27	73.64	73.46	73.39	73.21
19 59	0.005 0.005	200.0 200.0	2.57 2.66	22.58 24.02	20.01 21.36	11.4 11.1	72.56 71.83	72.43 71.70	72.30 71.58	72.71 71.99	72.45 71.73	72.51 71.79	72.25 71.53
59 481	0.005	200.0	2.66 2.26	24.02 21.41	21.36 19.15	11.1 10.5	71.83	71.70	71.58 72.39	71.99	71.73	71.79	71.53
22	0.004	200.0	2.20	20.71	18.55	10.3	73.19	73.02	72.85	73.35	73.01	73.15	72.81
453	0.002	250.0	2.69	26.09	23.40	10.3	71.93	71.82	71.73	72.12	71.92	71.87	71.67
478	0.003	200.0	1.84	18.03	16.19	10.2	72.48	72.40	72.39	72.64	72.47	72.44	72.27
6 61	0.004 0.004	250.0 200.0	3.69 2.07	36.30 21.32	32.61 19.26	10.2 9.7	72.59 72.19	72.44 72.09	72.29 71.99	72.79 72.35	72.48 72.14	72.54 72.15	72.23 71.94
61 479	0.004	200.0	2.07	17.36	19.20	9.7 9.4	72.19	72.09	71.99	72.35	72.14	72.15	71.94
30	0.002	250.0	2.71	29.59	26.88	9.2	73.72	73.58	73.45	73.92	73.64	73.67	73.39
198	0.001	200.0	1.08	11.80	10.73	9.1	73.43	73.39	73.34	73.59	73.50	73.39	73.30
221 4	0.003 0.004	200.0 250.0	1.71 2.96	19.40 36.87	17.69 33.91	8.8 8.0	74.50 72.91	74.38 72.77	74.26 72.64	74.66 73.11	74.42	74.46 72.86	74.22 72.58
4 44	0.004	250.0 200.0	2.96 1.79	36.87 22.53	33.91 20.74	8.0 7.9	72.91	72.77	72.64	73.11	72.83 72.67	72.86	72.58
3	0.003	250.0	2.70	34.98	32.28	7.7	73.20	73.05	72.91	73.40	73.11	73.15	72.86
62	0.004	200.0	1.54	20.66	19.12	7.4	72.47	72.34	72.21	72.63	72.37	72.43	72.17
159	0.007	200.0	2.02	27.40	25.38	7.4	71.03	70.79	70.64	71.20	70.71	71.00	70.51
83 447	0.003 0.004	200.0 200.0	1.40 1.47	19.07 20.61	17.67 19.14	7.3 7.1	74.67 72.49	74.58 72.29	74.50 72.10	74.83 72.65	74.66 72.26	74.63 72.45	74.46 72.06
447	0.004	200.0	1.47	20.01	21.42	6.9	72.49	73.03	73.02	73.27	73.12	73.07	72.92
477	0.003	250.0	2.18	32.34	30.17	6.7	72.39	72.39	72.39	72.52	72.35	72.27	72.10
127	0.004	200.0	1.42	21.31	19.89	6.7	70.18	70.02	69.86	70.35	70.02	70.15	69.82
157 165	0.007 0.004	300.0 200.0	5.30 1.33	83.06 20.98	77.75 19.65	6.4 6.4	71.19 71.62	70.99 71.46	70.80 71.32	71.44 71.78	71.03 71.47	71.14 71.58	70.73 71.27
1	0.004	250.0	1.85	29.32	27.47	6.3	73.66	73.56		73.87	73.67	73.62	73.42
										-			Bentlev S

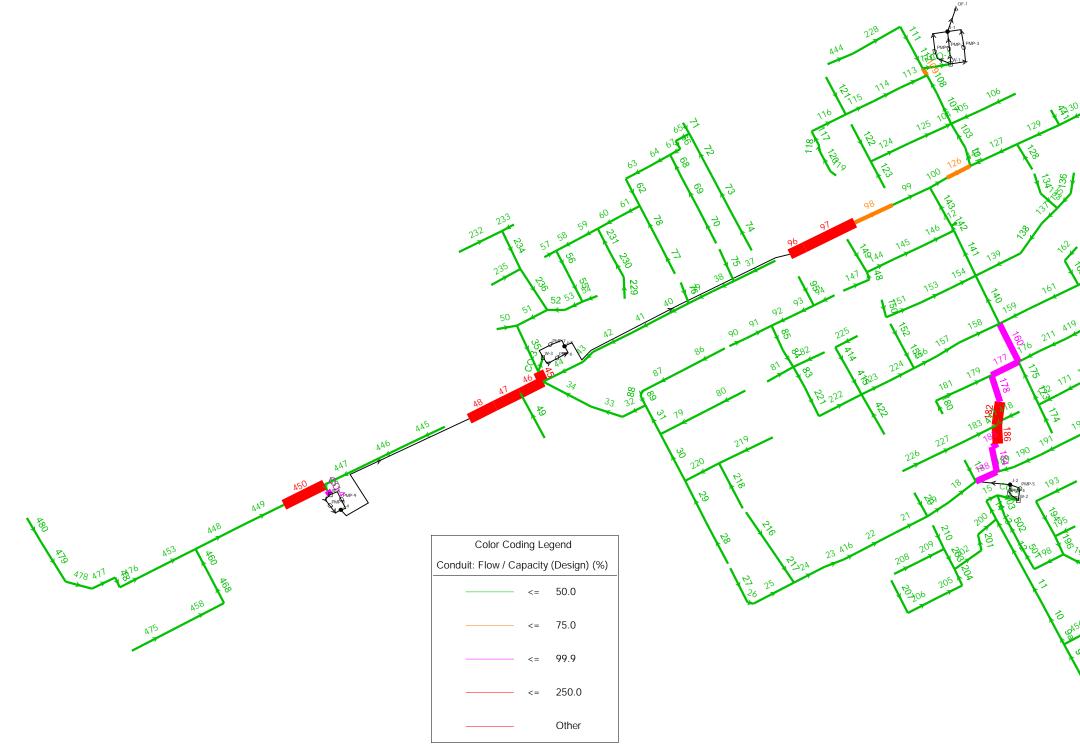
Bentley SewerCAD V8i (SELECTseries 2) [08.11.02.75] Page 1 of 3

Winchester.swc 11/6/2012 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Conduit Table (Winchester.swc) Active Scenario: Future - Peak Wet Weather Pumped

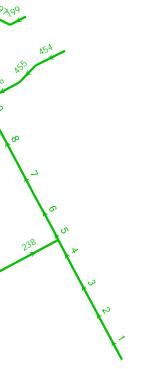
Current Time: 0.000 hours

Label	Slope (m/m)	Diameter (mm)	Flow (L/s)	Capacity (Full Flow) (L/s)	Capacity (Excess Full Flow) (L/s)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (m)	Hydraulic Grade Line (Middle) (m)	Hydraulic Grade Line (Out) (m)	Elevation Crown (Start) (m)	Elevation Crown (Stop) (m)	Invert (Start) (m)	Invert (Stop) (m)
200	0.003	200.0	1.04	17.26	16.23	6.0	70.66	70.59	70.52	70.83	70.69	70.63	70.49
139	0.003	200.0	1.14	19.16	18.01	6.0	70.56	70.38	70.20	70.73	70.37	70.53	70.17
167	0.003	200.0	1.07	18.03	16.96	6.0	72.12	72.09	72.05	72.29	72.22	72.09	72.02
129	0.004	200.0	1.08	19.74	18.66	5.5	70.54	70.36	70.18	70.71	70.35	70.51	70.15
416	0.003	250.0	1.79	32.78	30.99	5.5	73.29	73.24	73.19	73.50	73.40	73.25	73.15
201	0.003	200.0	1.03	18.95	17.92	5.4	70.82	70.76	70.71	70.99	70.87	70.79	70.67
476	0.006	250.0	2.36	45.61	43.25	5.2	72.39	72.16	71.94	72.60	72.15	72.35	71.90
460	0.003	250.0	1.61	31.46	29.85	5.1	71.90	71.81	71.73	72.12	71.93	71.87	71.68
24	0.003	250.0	1.53	30.18	28.65	5.1	73.67	73.57	73.48	73.88	73.69	73.63	73.44
468	0.003	250.0	1.61	31.92	30.30	5.0	72.09	72.00	71.90	72.30	72.12	72.05	71.87
501	0.005	200.0	1.13	22.40	21.27	5.0	73.33	73.18	73.03	73.50	73.20	73.30	73.00
116	0.004	200.0	1.04	20.77	19.73	5.0	76.23	76.07	75.90	76.40	76.07	76.20	75.87
2	0.005	250.0	2.12	43.05	40.93	4.9	73.46	73.32	73.20	73.67	73.40	73.42	73.15
446	0.004	200.0	1.01	20.73	19.72	4.9	72.88	72.68	72.49	73.05	72.65	72.85	72.45
443	0.008	200.0	1.45	30.03	28.57	4.8	69.85	69.71	69.63	70.02	69.74	69.82	69.54
42	0.009	200.0	1.48	31.68	30.19	4.7	73.97	73.53	73.11	74.14	73.27	73.94	73.07
85	0.004	200.0	0.91	20.01	19.09	4.6	75.06	74.95	74.84	75.23	75.01	75.03	74.81
84	0.005	200.0	0.99	22.21	21.22	4.5	74.84	74.74	74.67	75.01	74.82	74.81	74.62
138	0.004	200.0	0.91	20.81	19.89	4.4	71.04	70.88	70.73	71.21	70.90	71.01	70.70
166	0.006	200.0	1.14	26.21	25.06	4.4	72.05	71.72	71.62	72.22	71.57	72.02	71.37
CO-2	0.120	250.0	8.94	206.00	197.06	4.3	69.99	69.96	69.93	70.20	70.14	69.95	69.89
220	0.003	250.0	1.33	30.80	29.47	4.3	73.98	73.87	73.76	74.19	73.97	73.94	73.72
202	0.005	200.0	0.99	23.03	22.03	4.3	71.23	71.06	70.89	71.40	71.06	71.20	70.86
23	0.004	250.0	1.66	38.99	37.33	4.3	73.48	73.38	73.29	73.69	73.50	73.44	73.25
412	0.001	200.0	0.32	7.49	7.17	4.3	69.96	69.97	69.96	70.00	69.99	69.80	69.79
236	0.004	200.0	0.88	20.73	19.85	4.2	71.36	71.15	70.94	71.53	71.11	71.33	70.91
130	0.004	200.0	0.82	19.43	18.61	4.2	70.81	70.68	70.54	70.99	70.71	70.79	70.51
113	0.017	200.0	1.81	43.32	41.51	4.2	73.23	72.68	72.14	73.40	72.31	73.20	72.11
168	0.007	200.0	1.03	26.90	25.86	3.8	72.53	72.32	72.12	72.70	72.29	72.50	72.09
114	0.018	200.0	1.64	43.59	41.96	3.8	74.42	73.82	73.23	74.59	73.40	74.39	73.20
458	0.003	250.0	1.17	32.07	30.90	3.7	72.46	72.30	72.15	72.68	72.36	72.43	72.11
40	0.009	200.0	1.06	30.24	29.18	3.5	76.15	75.83	75.51	76.32	75.68	76.12	75.48
66	0.005	200.0	0.80	22.95	22.16	3.5	75.09	75.04	74.99	75.26	75.16	75.06	74.96
115	0.017	200.0	1.44	43.10	41.66	3.4	75.52	74.97	74.42	75.69	74.59	75.49	74.39
456	0.006	200.0	0.87	26.33	25.46	3.3	72.02	71.75	71.47	72.20	71.65	72.00	71.45
137	0.005	200.0	0.74	22.53	21.79	3.3	71.26	71.15	71.04	71.44	71.21	71.24	71.01
196	0.004	200.0	0.67	20.70	20.03	3.3	73.43	73.43	73.43	71.99	71.82	71.79	71.62
63	0.019	200.0	1.41	45.68	44.27	3.1	73.62	73.09	72.55	73.80	72.73	73.60	72.53
120	0.008	200.0	0.91	29.95	29.05	3.0	77.13	76.91	76.68	77.31	76.86	77.11	76.66
65	0.006	200.0	0.75	24.92	24.17	3.0	75.30	75.21	75.11	75.48	75.29	75.28	75.09
118	0.009	200.0	0.91	30.34	29.44	3.0	76.68	76.65	76.62	76.86	76.80	76.66	76.60
189	0.004	200.0	0.64	21.34	20.70	3.0	71.94	71.87	71.87	72.12	71.96	71.92	71.76
64	0.019	200.0	1.33	44.68	43.35	3.0	74.61	74.12	73.62	74.79	73.80	74.59	73.60
215	0.005	200.0	0.63	22.23	21.59	2.9	72.74	72.64	72.53	72.92	72.71	72.72	72.51
183	0.004 0.003	200.0	0.58 0.85	21.35	20.77 30.19	2.7	71.86 72.77	71.69 72.61	71.62 72.46	72.04 72.99	71.69	71.84 72.74	71.49
475 219	0.001	250.0 250.0	0.57	31.04 21.00	20.43	2.7 2.7	74.13	74.05	73.98	74.35	72.68 74.19	74.10	72.43 73.94
38	0.004	200.0	0.57	21.07	20.50	2.7	76.82	76.72	76.61	77.00	76.79	76.80	76.59
117	0.010	200.0	0.91	33.55	32.64	2.7	76.62	76.44	76.25	76.80	76.43	76.60	76.23
204	0.004	200.0	0.55	20.21	19.67	2.7	71.37	71.30	71.23	71.55	71.40	71.35	71.20
454	0.004	200.0	0.55	20.35	19.81	2.7	72.88	72.75	72.61	73.06	72.79	72.86	72.59
89	0.002	250.0	0.75	27.81	27.07	2.7	73.29	73.26	73.24	73.51	73.46	73.26	73.21
111	0.005	200.0	0.61	23.86	23.25	2.6	72.76	72.61	72.46	72.94	72.64	72.74	72.44
214	0.005	200.0	0.58	22.71	22.14	2.5	73.18	72.96	72.74	73.36	72.92	73.16	72.72
131	0.004	200.0	0.52	20.81	20.29	2.5	71.86	71.72	71.59	72.04	71.77	71.84	71.57
92	0.004	200.0	0.50	20.47	19.97	2.5	76.31	76.22	76.12	76.49	76.30	76.29	76.10
39	0.008	200.0	0.74	29.86	29.13	2.5	76.61	76.38	76.15	76.79	76.32	76.59	76.12
67	0.010	200.0	0.80	32.41	31.61	2.5	74.86	74.74	74.61	75.04	74.79	74.84	74.59
502	0.022	200.0	1.20	49.05	47.85	2.4	73.02	72.27	71.52	73.20	71.70	73.00	71.50
29	0.005	250.0	1.06	43.50	42.44	2.4	74.25	73.98	73.72	74.47	73.94	74.22	73.69
132	0.004	200.0	0.49	21.00	20.52	2.3	72.18	72.02	71.86	72.36	72.04	72.16	71.84
216	0.002	250.0	0.68	29.14	28.47	2.3	74.20	74.05	73.90	74.42	74.12	74.17	73.87
217	0.003	250.0	0.68	30.40	29.72	2.2	73.90	73.81	73.72	74.12	73.94	73.87	73.69
455	0.009	200.0	0.71	31.95	31.24	2.2	72.55	72.31	72.07	72.73	72.25	72.53	72.05
205	0.004	200.0	0.46	20.98	20.52	2.2	71.64	71.52	71.40	71.82	71.58	71.62	71.38
41	0.031	200.0	1.27	57.77	56.49	2.2	75.50	74.55	73.97	75.68	73.77	75.48	73.57
234 238	0.005	200.0 200.0	0.49	22.57 20.87	22.08 20.42	2.2	71.78 73.12	71.57 72.88	71.36 72.64	71.96 73.30	71.53 72.81	71.76 73.10	71.33 72.61
503	0.033	200.0	1.26	59.99	58.73	2.1 2.1	71.52	70.75	69.99	71.70	70.15	71.50	69.95
25	0.003	250.0	0.63	30.06	29.43	2.1	73.91	73.78	73.67	74.13	73.88	73.88	73.63
194	0.004	200.0	0.44	21.00	20.56	2.1	73.43	73.43	73.43	72.34	71.99	72.14	71.79
218	0.003	250.0	0.63	30.12	29.49	2.1	74.31	74.17	74.03	74.53	74.25	74.28	74.00
50	0.004	200.0	0.41	19.80	19.39	2.1	70.79	70.71	70.63	70.97	70.81	70.77	70.61
79	0.003	250.0	0.58	29.96	29.38	1.9	73.74	73.60	73.46	73.97	73.69	73.72	73.44
133	0.004	200.0	0.37	19.54	19.17	1.9	71.45	71.36	71.28	71.63	71.46	71.43	71.26
72	0.011	200.0	0.63	33.94	33.31	1.9	76.53	75.98	75.44	76.71	75.62	76.51	75.42
28	0.005	250.0	0.79	42.97	42.19	1.8	74.77	74.51	74.25	75.00	74.47	74.75	74.22
175	0.010	200.0	0.60	33.11	32.51	1 0	72.28	71.96	71.64	72.46	71.82	72.26	71.62
93	0.004	200.0	0.38	20.94	20.56	1.8 1.8	76.52	76.41	76.31	76.70	76.49	76.50	76.29
179	0.005	200.0	0.40	22.40	22.00	1.8	71.45	71.30	71.21	71.63	71.33	71.43	71.13
134	0.003	200.0	0.29	16.53	16.23	1.8	71.56	71.50	71.45	71.74	71.63	71.54	71.43
232	0.002	200.0	0.24	13.32	13.09	1.8	71.89	71.80	71.78	72.07	71.90	71.87	71.70
480	0.003	200.0	0.29	16.93	16.64	1.7	72.90	72.82	72.76	73.08	72.92	72.88	72.72
203	0.006	200.0	0.41	25.64	25.23	1.6	71.52	71.37	71.23	71.70	71.40	71.50	71.20
154	0.015	200.0	0.65	40.27	39.62	1.6	71.36	70.90	70.44	71.54	70.62	71.34	70.42
231	0.007	200.0	0.45	28.04	27.59	1.6	73.01	72.78	72.56	73.19	72.74	72.99	72.54
49	0.004	200.0	0.33	20.80	20.47	1.6	73.88	73.88	73.88	73.47	73.03	73.27	72.83
106	0.005	200.0	0.37	23.20	22.83	1.6	72.19	71.97	71.76	72.37	71.94	72.17	71.74
206	0.004	200.0	0.33	20.73	20.40	1.6	71.93	71.78	71.64	72.11	71.82	71.91	71.62
91 445	0.004 0.005	200.0 200.0	0.31 0.35	20.15 22.80	19.83 22.46	1.5 1.5	75.32 73.29	75.20 73.08	75.09 72.88	75.50 73.47	75.27 73.05	75.30 73.27	75.07 72.85 Bentley Se


Winchester.swc 11/6/2012 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Conduit Table (Winchester.swc) Active Scenario: Future - Peak Wet Weather Pumped

Current Time: 0.000 hours


Label	Slope (m/m)	Diameter (mm)	Flow (L/s)	Capacity (Full Flow) (L/s)	Capacity (Excess Full Flow) (L/s)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (m)	Hydraulic Grade Line (Middle) (m)	Hydraulic Grade Line (Out) (m)	Elevation Crown (Start) (m)	Elevation Crown (Stop) (m)	Invert (Start) (m)	Invert (Stop) (m)
145 163	0.020 0.005	200.0 200.0	0.69 0.34	45.83 23.14	45.13 22.80	1.5 1.5	75.15 71.56	74.55 71.41	73.96 71.32	75.33 71.74	74.14 71.44	75.13 71.54	73.94 71.24
125	0.030	200.0	0.81	56.77	55.95	1.4	72.77	71.51	70.25	72.95	70.43	72.75	70.23
176 211	0.009 0.007	200.0 200.0	0.44 0.39	30.75 27.66	30.31 27.26	1.4 1.4	72.21 72.65	71.98 72.43	71.76 72.21	72.39 72.83	71.94 72.39	72.19 72.63	71.74 72.19
37	0.004	200.0	0.29	20.55	20.26	1.4	77.21	77.01	76.82	77.39	77.00	77.19	76.80
146 173	0.037 0.010	200.0 200.0	0.89 0.46	63.38 32.92	62.49 32.46	1.4 1.4	73.96 72.67	72.43 72.47	70.91 72.28	74.14 72.85	71.09 72.46	73.94 72.65	70.89 72.26
193	0.005	200.0	0.32	23.48	23.16	1.4	73.43	73.43	73.43	72.84	72.34	72.64	72.14
105 73	0.010 0.008	200.0 200.0	0.45 0.39	32.86 28.84	32.41 28.45	1.4 1.4	71.76 77.23	71.42 76.88	71.09 76.53	71.94 77.41	71.27 76.71	71.74 77.21	71.07 76.51
80	0.002	250.0	0.40	29.34	28.94	1.4	73.97	73.86	73.74	74.20	73.97	73.95	73.72
190 121	0.015 0.004	200.0 200.0	0.53 0.25	40.34 19.47	39.81 19.22	1.3 1.3	72.89 75.92	72.41 75.76	71.94 75.60	73.07 76.10	72.12 75.78	72.87 75.90	71.92 75.58
135	0.004	200.0	0.26	20.93	20.66	1.3	71.43	71.34	71.26	71.61	71.44	71.41	71.24
78 415	0.016 0.010	200.0 200.0	0.53 0.41	42.08 32.54	41.55 32.13	1.3 1.3	75.41 75.15	74.65 74.86	73.90 74.57	75.59 75.33	74.08 74.75	75.39 75.13	73.88 74.55
87	0.007	250.0	0.58	48.17	47.59	1.2	74.02	73.69	73.36	74.25	73.59	74.00	73.34
69 104	0.009 0.045	200.0 200.0	0.37 0.81	30.98 69.37	30.61 68.56	1.2 1.2	76.75 70.25	76.42 69.95	76.10 69.65	76.93 70.43	76.28 69.83	76.73 70.23	76.08 69.63
209	0.006	200.0	0.29	25.14	24.85	1.2	71.92	71.74	71.56	72.10	71.74	71.90	71.54
169 144	0.005 0.019	200.0 200.0	0.26 0.49	23.70 44.80	23.43 44.31	1.1 1.1	72.93 76.34	72.72 75.74	72.53 75.15	73.12 76.53	72.70 75.33	72.92 76.33	72.50 75.13
192	0.005	200.0	0.25	23.23	22.98	1.1	74.18	73.92	73.66	74.37	73.85	74.17	73.65
230 74	0.008 0.004	200.0 200.0	0.31 0.21	29.94 20.58	29.64 20.37	1.0 1.0	73.47 77.58	73.24 77.40	73.01 77.23	73.66 77.77	73.19 77.41	73.46 77.57	72.99 77.21
26	0.002	250.0	0.24	23.51	23.27	1.0	73.95	73.94	73.93	74.18	74.16	73.93	73.91
136 124	0.004 0.030	200.0 200.0	0.20 0.57	20.07 57.23	19.87 56.66	1.0 1.0	71.59 75.60	71.51 74.18	71.43 72.77	71.78 75.79	71.61 72.95	71.58 75.59	71.41 72.75
68 181	0.021 0.003	200.0 200.0	0.47 0.18	47.86 18.35	47.38 18.18	1.0 1.0	76.09 71.65	75.48 71.55	74.87 71.45	76.28 71.84	75.06 71.63	76.08 71.64	74.86 71.43
191	0.003	200.0	0.18	40.36	39.97	1.0 1.0	71.65	71.55	71.45	71.84	73.07	73.65	71.43
237 213	0.002 0.010	200.0 200.0	0.15 0.32	15.84 33.38	15.69 33.06	1.0 1.0	73.39 74.23	73.25 73.73	73.12 73.22	73.58 74.42	73.30 73.41	73.38 74.22	73.10 73.21
414	0.010	200.0	0.32	33.38	32.92	0.9	74.23	75.44	75.15	75.91	75.33	74.22	75.13
162 227	0.004 0.020	200.0 200.0	0.20 0.42	21.40 46.58	21.20 46.16	0.9 0.9	71.73 73.35	71.64 72.60	71.56 71.86	71.91 73.54	71.74 72.04	71.71 73.34	71.54 71.84
419	0.004	200.0	0.42	40.58 21.65	21.46	0.9	72.81	72.73	72.65	73.00	72.83	72.80	72.63
153 81	0.024 0.004	200.0 200.0	0.45 0.18	50.40 20.45	49.96 20.27	0.9 0.9	73.02 74.89	72.19 74.77	71.36 74.67	73.21 75.08	71.54 74.83	73.01 74.88	71.34 74.63
77	0.013	200.0	0.10	37.41	37.11	0.9	76.34	75.87	74.07	76.53	75.59	76.33	75.39
207 148	0.004 0.004	200.0 200.0	0.17 0.16	20.88 19.99	20.71 19.83	0.8 0.8	72.27 76.49	72.11 76.46	71.95 76.43	72.46 76.68	72.14 76.62	72.26 76.48	71.94 76.42
70	0.008	200.0	0.23	29.76	29.53	0.8	77.43	77.09	76.75	77.62	76.93	77.42	76.73
112 197	0.081 0.010	200.0 200.0	0.69 0.23	93.29 32.02	92.60 31.79	0.7 0.7	72.45 73.43	70.65 73.43	69.07 73.43	72.64 72.43	69.04 71.82	72.44 72.23	68.84 71.62
155	0.016	200.0	0.30	41.03	40.73	0.7	73.36	72.90	72.43	73.55	72.62	73.35	72.42
128 228	0.004 0.010	200.0 250.0	0.15 0.42	20.81 59.79	20.67 59.36	0.7 0.7	71.44 74.00	71.29 73.41	71.14 72.82	71.63 74.23	71.33 73.05	71.43 73.98	71.13 72.80
122	0.011	200.0	0.24	34.13	33.88	0.7	76.59	76.10	75.61	76.78	75.80	76.58	75.60
75 225	0.004 0.010	200.0 200.0	0.14 0.23	20.75 32.81	20.60 32.59	0.7 0.7	77.43 76.66	77.28 76.39	77.13 76.12	77.62 76.85	77.32 76.31	77.42 76.65	77.12 76.11
226	0.010	200.0	0.22	32.49	32.27	0.7	74.02	73.69	73.35	74.21	73.54	74.01	73.34
95 123	0.004 0.004	200.0 200.0	0.14 0.14	20.73 20.45	20.59 20.31	0.7 0.7	76.82 75.86	76.68 75.74	76.54 75.61	77.01 76.05	76.73 75.80	76.81 75.85	76.53 75.60
149	0.009 0.007	200.0	0.21	31.25	31.05	0.7	77.81 73.79	77.44	77.06 73.47	78.00	77.25	77.80	77.05
229 195	0.007	200.0 200.0	0.18 0.22	27.08 32.98	26.90 32.76	0.7 0.7	73.79	73.63 73.43	73.47	73.98 72.48	73.66 71.99	73.78 72.28	73.46 71.79
174	0.009	200.0	0.21	31.65	31.44	0.7	73.29	72.98	72.67	73.48	72.85	73.28	72.65
208 90	0.006 0.004	200.0 200.0	0.16 0.13	25.43 21.13	25.27 21.00	0.6 0.6	72.26 75.52	72.09 75.42	71.92 75.32	72.45 75.71	72.10 75.50	72.25 75.51	71.90 75.30
17 235	0.005 0.015	200.0 200.0	0.13 0.23	22.26 39.80	22.12 39.56	0.6 0.6	72.19 72.39	72.12 71.87	72.10 71.36	72.38 72.58	72.14 71.53	72.18 72.38	71.94 71.33
172	0.008	200.0	0.17	29.52	29.35	0.6	73.05	72.86	72.67	73.24	72.85	73.04	72.65
71 171	0.004 0.007	200.0 200.0	0.11 0.16	19.80 28.37	19.69 28.21	0.6 0.5	75.54 73.51	75.49 73.28	75.44 73.05	75.73 73.70	75.63 73.24	75.53 73.50	75.43 73.04
151	0.026	200.0	0.29	52.73	52.45	0.5	75.10	74.06	73.02	75.29	73.21	75.09	73.01
147 212	0.009 0.002	200.0 200.0	0.16 0.07	31.23 13.45	31.07 13.39	0.5 0.5	77.05 73.22	76.78 73.20	76.50 73.18	77.24 73.41	76.69 73.37	77.04 73.21	76.49 73.17
444	0.012	200.0	0.18	36.54	36.36	0.5	74.72	74.36	74.00	74.91	74.18	74.71	73.98
82 20	0.010 0.014	200.0 200.0	0.15 0.17	32.27 38.31	32.12 38.14	0.5 0.4	75.86 73.95	75.50 73.55	75.14 73.16	76.05 74.14	75.33 73.35	75.85 73.94	75.13 73.15
94	0.011	200.0	0.15	33.77	33.62	0.4	77.04	76.77	76.52	77.23	76.70	77.03	76.50
27 417	0.009 0.005	250.0 200.0	0.24 0.09	54.93 22.19	54.69 22.10	0.4 0.4	74.76 71.62	74.37 71.62	73.97 71.62	75.00 71.60	74.21 71.54	74.75 71.40	73.96 71.34
76	0.004	200.0	0.09	21.27	21.18	0.4	76.39	76.29	76.19	76.58	76.38	76.38	76.18
150 86	0.018 0.015	200.0 250.0	0.18 0.30	43.93 72.97	43.75 72.68	0.4 0.4	75.84 75.52	75.49 74.77	75.14 74.02	76.03 75.76	75.33 74.25	75.83 75.51	75.13 74.00
57	0.004	200.0	0.07	20.43	20.36	0.4	71.44	71.38	71.34	71.63	71.52	71.43	71.32
152 88	0.019 0.105	200.0 250.0	0.15 0.58	44.84 192.31	44.68 191.73	0.3 0.3	74.26 73.32	73.81 73.29	73.36 73.29	74.45 73.56	73.55 72.54	74.25 73.31	73.35 72.29
180	0.003	200.0	0.05	18.42	18.37	0.3	71.75	71.70	71.65	71.94	71.84	71.74	71.64
54 418	0.005 0.010	200.0 200.0	0.07 0.09	23.04 32.87	22.97 32.78	0.3 0.3	72.92 71.91	72.83 71.68	72.75 71.62	73.11 72.10	72.94 71.65	72.91 71.90	72.74 71.45
199 210	0.021 0.010	200.0	0.12	47.15 32.27	47.03	0.3	73.43	73.43	73.43 72.13	73.23	72.43	73.03	72.23
210 170	0.020	200.0 200.0	0.07 0.08	45.89	32.20 45.81	0.2 0.2	72.67 73.46	72.40 73.19	72.93	72.86 73.66	72.32 73.12	72.66 73.46	72.12 72.92
441 233	0.016 0.015	200.0 200.0	0.06 0.05	40.94 39.52	40.88 39.47	0.2 0.1	71.09 72.12	70.80 71.91	70.54 71.78	71.28 72.32	70.71 71.90	71.08 72.12	70.51 71.70
119	0.014	200.0	0.00	39.02	39.02	0.0	77.33	77.23	77.13	77.53	77.31	77.33	77.11
451	-0.004	250.0	36.89	-38.90	-75.79	-94.8	71.22	71.19	71.16	71.15	71.21	70.90	70.96 Bentlev Se

Winchester.swc 11/6/2012 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

MEMORANDUM

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

Page 1 of 3

То:	Dan Belleau	Date:	June 16, 2017
	Director of Public Works Township of North Dundas	Job No.:	27448-01
		CC:	Angela Rutley, Township of North Dundas
From:	Mark Buchanan, P.Eng.		Calvin Pol, Township of North Dundas
Re:	Village of Winchester – Main Street West		

Background

The Township of North Dundas (Township) retained the services of J.L. Richards & Associates Limited (JLR) in the spring of 2017 to complete a Municipal Class Environmental Assessment for expansion of the Winchester Sewage Lagoons. During this project the Township requested that JLR assess the capacity of the existing Main Street West Pumping Station (PS), based on current development and operation of the pumping station, a proposed gas station/car wash site and future development envisioned as part of the Class EA.

In 2012, prior to this assessment, the Township requested that JLR investigate the wastewater capacity in the west end for a future gas station/car wash located at the intersection of Hwy #31 and Main Street. This investigation is summarized in a memorandum titled Village of Winchester – Future Gas Station Impact on West End Sewer System (JLR, October 11, 2012). It was concluded at that time that the Main Street West PS undergo a pump upgrade prior to accepting any additional wastewater flows from the proposed gas station or other development.

The west end wastewater collection system begins at the intersection of Hwy #31 and Main Street where sewage is conveyed via gravity to the Main Street West PS. Collected sewage is then pumped approximately 350 m along Main Street and discharges to a gravity sewer that conveys the flow to the Bailey Street PS. A 150 mm diameter forcemain from the Bailey Street PS discharges to a gravity sewer approximately 625 m east along Main Street. From this point wastewater flows by gravity to the Ottawa Street PS where it is then pumped to the treatment Lagoon (refer to the attached sketch in Appendix 'A').

In discussion with Township staff, we understand that since the 2012 investigation, the Main Street West PS submersible pump impellers were replaced to address on-going clogging issues attributed infrequent use allowing debris and rags to settle in the wet well. The Main Street West PS was originally designed to pump 3.4 L/s at 4.5 m total dynamic head (TDH) and can be upgraded to accommodate up to 12.3 L/s.

The following information was used in this assessment:

Pumping Station Assessment

- Current Main Street West PS pump curve;
- Main Street West PS operational data from 2014 to 2016, (2 years of instantaneous flows from 2015 to 2016);
- Updated Projected Sanitary Sewer Connections (0-10 Years and 10-20 Years);
- West Service Area Development Projects Memorandum with Village comments dated September 27, 2012;
- Peak wastewater flows expected from the proposed gas station and car wash;
- Pump Station Design Brief dated March 2005 (Main Street West); and
- Ministry of Environment and Climate Change (MOECC), Amended Certificate of Approval (C of A) dated May 16, 2005.

Current Operations Review

Current operations of the Main Street West PS were reviewed, comparing instantaneous pumped flows, the manufacturer pump curve and the MOECC C of A as summarized in Table 1.

Page 2 of 3

Main Street West PS	Data
Average Daily Instantaneous Pumped Flow	1.16 L/s
Manufacturer Pump Curve Duty Point	3.4 L/s @ 4.5 m TDH
MOECC C of A	3.5 L/s

Table 1: Main Street West Pumping Station Operational Review

The average daily instantaneous pumped flow of 1.16 L/s is significantly less than the pump duty point of 3.4 L/s at 4.5 m of total dynamic head (TDH) obtained from the manufacturer's pump curve. The Ontario Clean Water Agency (OCWA) advised that the average daily instantaneous pumped flow is calculated based on wet well volume and pump run time and is not measured with a flow meter. OCWA reviewed and confirmed that the average instantaneous pumped flow is being calculated properly. It is understood that the Main Street West SP is operating at a lower capacity following the recently impeller upgrades to address the pump clogging/ragging issue. Beyond the impeller upgrade, no information has been provided to suggest that the pumping system has been significantly modified that would result in an increased TDH to pump flow to the outlet and in turn lower the pumping flow rates.

From Main Street West PS Design Brief (Stantec, March 2005) the Design Point of 3.5 L/s at 4.5 m of TDH matches the pump flow rate indicated in the MOECC C of A and the duty point of the current pump curve (within 0.1 L/s), however, the operational data does not match the design point or current pump curve. It is unknown why there is a 2.34 L/s discrepancy between the design and operational flow rates recorded at the pumping station, but it is recommended that further investigation be undertaken as part of any future pump upgrade.

Flow Projections

Three years of daily sewage flow data from 2014 to 2016 along with daily instantaneous flows were reviewed. Peak wastewater generated from the existing service area was estimated based on the 15 m³/day of average daily flow recorded at the Main Street West PS and peaked by a factor of (Manning peaking factor) based on the service population. The peak flow of 0.93 L/s anticipated from the proposed gas station and car wash was added to the existing flow (refer to Appendix 'B' for correspondence). In addition, wastewater flows from existing development not connected (committed capacity) and future development areas provided by the Township for the on-going sewage Lagoon Class Environmental Assessment were also added to the existing flow (refer to Appendix 'C' for future development areas). For future development lands the sewage flows were estimated at the commercial rate of 28,000 L/ha/day as recommended in the MOECC Sewage Design Guidelines, 2008. A peak factor of 1.5 was applied to commercial flows. Sewage flows are summarized in the following table (for complete details refer to Appendix 'D').

Development	Estimated Peak Flow (L/s)
Existing	0.69
Proposed Gas Station and Car Wash	0.93
Sub-Total	1.62
Existing Development to be Connected (Committed Capa	city)
Residential	1.13
Restaurant – Country Kitchen	0.28
Motel	0.57
Sub-Total	1.98
Total	3.60
Future Development	
Areas 2 to 6, and 9 to 12	12.58
Total	16.18

Table 2:	Estimated Peak Wastewater Flows
----------	--

Page 3 of 3

From the forgoing review, the combined peak flow of 1.62 L/s from the existing development and proposed gas station and car wash exceed the current pumping rate of 1.16 L/s. Therefore, it is recommended that the pumping station be updated to its design capacity of 3.4 L/s prior to servicing the proposed gas station and car wash and any future development.

A majority of the future development could be serviced by upgrading the existing pumping station to its design capacity of 12.3 L/s. The capacity of receiving downstream sewers and pumping stations would need to be reviewed and confirmed as part this potential upgrade.

Servicing the total estimated peak flow of 16.18 L/s associated with future development would likely require a more extensive pumping station upgrade consisting of a larger wet well and submersible pumps.

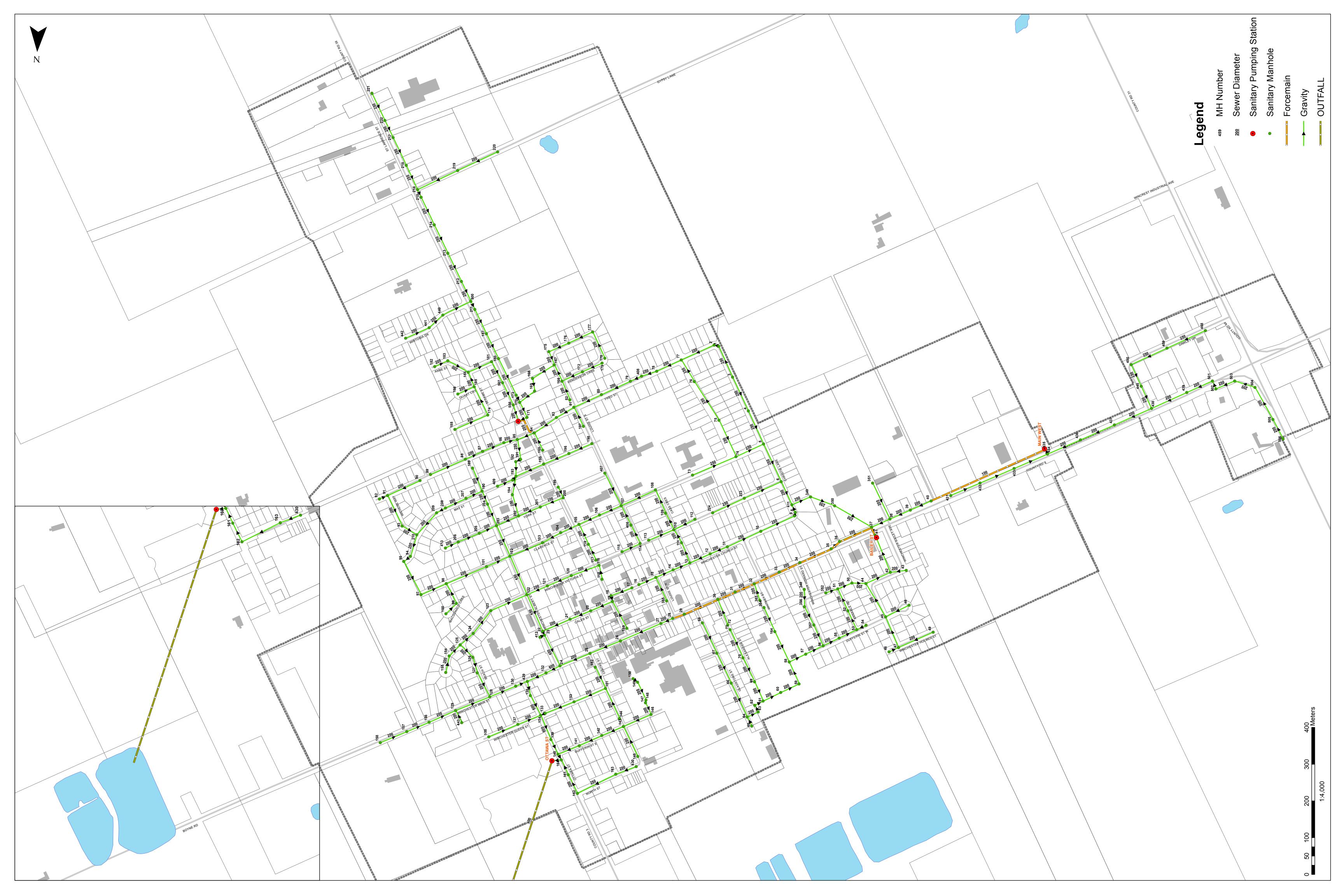
Conclusion and Recommendations

Future sewage generation rates to be collected at the Main Street West PS were reviewed based on the pumping station design, current measured flows, committed capacity for existing unconnected development and future development.

The following recommendations are provided for the Township's consideration:

- The existing pumping station should be upgraded to its design capacity of 3.4 L/s prior to servicing the proposed gas station and car wash and any future development;
- The discrepancy between the current pumping rate of 1.16 L/s and design rate of 3.4 L/s should be investigated as part of any future pumping station upgrade;
- Upgrading the station to its design capacity of 12.3 L/s can service a majority of the future development, however, extensive pumping station upgrades are required to service the estimated peak flow of 16.18 L/s; and
- The capacity of the receiving downstream sanitary collection system should be reviewed and confirmed prior to any Main Street West PS upgrades.

J.L. RICHARDS & ASSOCIATES LIMITED


Prepared by:

Reviewed by:

Mark Buchanan, P.Eng.

Sarah Gore, P.Eng.

MB/jd Encl. APPENDIX 'A'

APPENDIX 'B'

Mark Buchanan

From:	Mary Lynn Plummer <mplummer@northdundas.com></mplummer@northdundas.com>
Sent:	March 30, 2017 2:19 PM
То:	Mark Buchanan
Cc:	Sarah Gore; Dan Belleau; arutley@northdundas.com; 'Calvin Pol'
Subject:	FW: Pioneer - Winchester

Good afternoon,

Please see below: Email regarding Pioneer Gas flows for the Carwash and Convenience store. I believe all we need is updated flow or population projections for the service area? Let me know.

Thanks, Mary Lynn

From: cpol@northdundas.com [mailto:cpol@northdundas.com] Sent: Thursday, March 30, 2017 1:28 PM To: MaryLynn Plummer <<u>mplummer@northdundas.com</u>>; Angela Rutley <<u>arutley@northdundas.com</u>> Subject: Fw: Pioneer - Winchester

As requested.

From: Janet Paul <<u>Janet.Paul@pioneer.ca</u>> Sent: Thursday, March 30, 2017 1:16 PM To: <u>cpol@northdundas.com</u> Subject: Pioneer - Winchester

Hi Calvin,

Further to your request regarding sanitary flows our engineer has provided the following updated breakdown for our location post development. Please note the car wash flows have decreased as we are proposing a different wash package.

Convenience store/Gas bar – 9998 I/day. Converting to I/sec and applying a peaking factor of 4 this becomes 0.46 I/sec

Car Wash -170 vehicles/day x 240 litres/vehicle = 40,800 litres/day Convert to L/sec : 40,800/86400 = **0.47 L/sec.**

Please let me know if you have any questions or require additional information.

Regards,

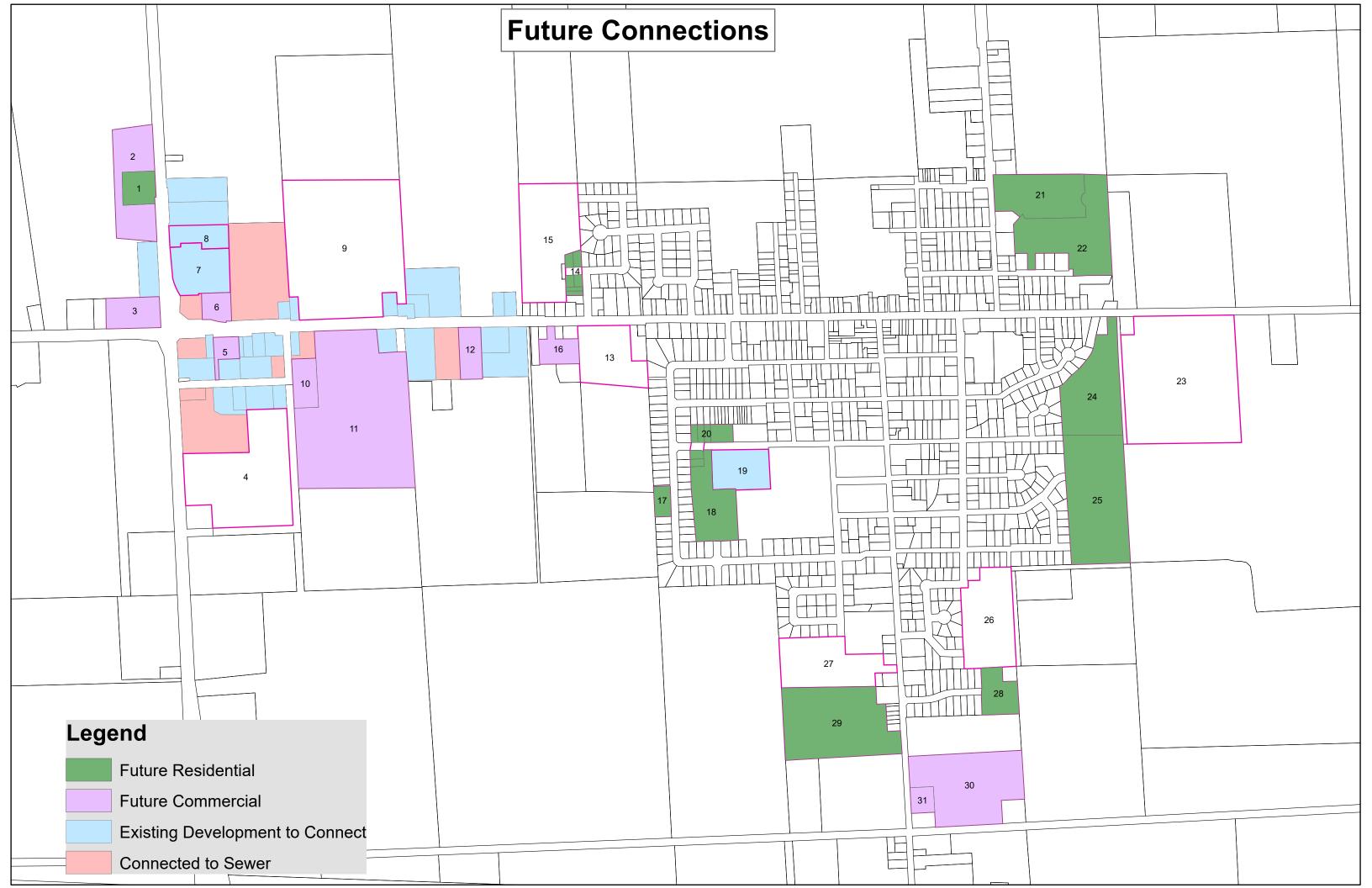
Janet Paul | Development Project Manager

Pioneer Energy A Division of Parkland Industries Ltd. 1122 International Blvd., Suite 700, Burlington, ON L7L 628 Telephone: 905 633-3480

NOTICE OF CONFIDENTIALITY

This e-mail is confidential and may contain privileged information. If you have received this e-mail in error: (i) contact the sender; (ii) delete the e-mail; and (iii) you are hereby notified that your receipt of this e-mail is not intended to waive privilege or the confidentiality of the communication. Any unauthorized use or disclosure is prohibited.

APPENDIX 'C'


PROJECTED SANITARY SEWER CONNECTIONS

(0-10 Years and 10-20 Years)

Development Area	Description	# of Lots or Area	# of Units Connected to Existing System	Short-Term (0 – 10 Years)	Long-Term (10-20 Years)
A	Area A – Connected Before the west end pump station	8	see existing flow		
А	Area A Existing – Not Connected Before the west end pump station	28	0	14	14
1	Commercial – Pioneer Gas Restaurant /Car Wash	1	0	0.93 l/sec	0
2	Commercial #31 Strip	1	0	0	2.22 ha
3	Commercial #43/#31 corner	1	0	0.97 ha	0
4	Industrial/Commercial John Deere	1	0	0	0
5	Commercial – Main Street South side	1	0	0.45 ha	0
6	Commercial – Main Street North side	1	0	0.2 ha	0
7	Motel	1	0	0	14 units
8	Restaurant – Country Kitchen	1	0	0	7 units
9	Commercial/Residential	1	0	0	0
10	Commercial	1	0	0	0.88 ha
11	Commercial	1	0	0	10.9 ha
12	Commercial	1	0	0	0.8 ha
	SANITARY SEWER FLOW FUTURE GROWTH	(KNOWN AND POT	ENTIAL)		
13	Residential Infill/Apartment in- houses/other throughout village	15	0	7	8
14	Winfields Subdivision.	6	0	6	0
15	Residential – Winfields Phase 2	1	0	0	0
16	Commercial	1	0	0	0.75 ha

17	Residential	4	0	4	0
18	New Dundas Manor (use existing flow)	1	Existing	0	0
19	Old Dundas Manor Building and Property	1	0	1.19 ha	0
20	Guy Racine Subdivision - Phase 3	8	0	8	0
21	PHD Health Care Seniors Complex	1	0	0	22 units (est.) (54 residents)-
22	Winchester Meadows Subdivision	26	0	18 Semi's (2x) 8 Singles	0
23	Vacant Residential	1	-	0	0
24	Woods Development			48 Apt. units	
	High Density Apartments	2	0	21 Condo Townhomes	0
25	Woods Development				19 singles
	Singles & Semi & Townhomes	34	-		13 semis (x2) 2 towns (x5)-
26	Residential - Barnhart	1	0	-	0
27	Residential - M. Lafortune Investments	1	0	0	0
	Residential	10	0	10 singles	-
28	Wintonia Dr. / James St	1		4 unit townhouse	
		1		6 unit townhouse	
	Residential	3	-		15 units towns
29	Esper Lane	5			22 units towns
		6			29 units towns
30	Commercial	1	-	-	4.34 ha
31	Commercial	1		0.40 ha	

Prepared by the Planning Department: May 30, 2017 (Version #3)

APPENDIX 'D'

Development	Unite	Commercial	Average	Peak
Development	Units	/Industrial	Flow	Flow
Existing	8	Area (ha)	(L/s) 0.17	(L/s) 0.69
Gas Station Car Wash	0		0.17	0.09
			Sub-Total	1.62
Future Development to be Co	nnoctod (C	committed)	Sub-Total	1.02
Residential	, ,	ommitted)	0.00	4 4 2
	28		0.28	1.13
Restaurant - Country Kitchen	/		0.07	0.28
Motel	14		0.14	0.57
			Sub-Total	1.98
			Total	3.60
Future Commerical/Industrial				
Area 2		2.22	0.72	1.08
Area 3		0.97	0.31	0.47
Area 4		0	0.00	0.00
Area 5		0.45	0.15	0.22
Area 6		0.2	0.06	0.10
Area 9		0	0.00	0.00
Area 10		0.88	0.29	0.43
Area 11		10.9	3.53	5.30
Area 12		0.8	0.26	0.39
Infiltration		16.42		4.60
	•		Sub-Total	12.58
			Total	16.18

Township of North Dundas Main St. West Pumping Station Assessment Sewage Flow Estimate

	Parameters
Existing Average Day	15 m ³ /day from 2014-2016 data
Unit Density	2.5 people/unit
Daily Demand	350 L/cap/day
Manning Peaking Factor	4
Infiltration	0.28 L/s/ha
Commerical/Industrial	28,000 L/ha/day
C/I Peaking Factor	1.5

Technical Memorandum

То:	Director, Client Services and Permissions Branch, MOECC
From:	Shawn Qu, P.Eng., Ontario Clean Water Agency (OCWA)
cc:	Stephane Barbarie (OCWA)
Date:	June 25, 2018
Project:	Pump Upgrade at Winchester Sewage Pumping Station No. 4
Subject:	Supporting Information for ECA Amendment Application (ECA # 4037-6CAMCT)

1 Project Background

The Winchester Sewage Pumping Station (SPS) No.4 was design by Stantec in 2005 and constructed in 2006 to meet the serviceability of the west portion of the community of Winchester in the Township of North Dundas. The SPS No. 4 was designed to accommodate a maximum flow rate of 12.3 L/s; however, as the initial development (Phase 1) only had a projected flow rate of 3.29 L/s, to avoid potential odour issues, two sewage pumps with a rated capacity of 3.5 L/s each were selected and installed in the wet well in 2006. The low pumping rate corresponded to a velocity of 0.38 m/s in the forcemain, which resulted in solids deposition in the forcemain.

With the gradual development in the service area of the SPS No.4, the sewage flow to the SPS has increased over the years, and the existing two pumps appear insufficient to handle the sewage coming into the wet well. As a result, the existing pumps will need to be upgraded to new larger pumps to accommodate the increased flow and alleviate solids deposition in the forcemain. The existing Environmental Compliance Approval (ECA) will need to be amended to reflect the information of the proposed pumps.

2 Existing System

The existing SPS No.4 is located on Main Street approximately 500 meters east of County Road 31, and consists of a 2.44 m diameter wet well and an aboveground building housing the control equipment. The wet well is equipped with two submersible sewage pumps (one duty and one standby), each rated at 3.5 L/s against a total dynamic head of 4.5 m. Raw sewage enters the wet well via a 250 mm sanitary sewer and then is pump to a downstream sanitary manhole via 348 meters of 100 mm diameter sanitary forcemain. The SPS No.4 is governed by an existing ECA (No. 4037-6CAMCT) issued on May 16, 2005. A copy of the ECA is attached in Appendix A.

The most recent flow information of the SPS No.4 between May 2017 and May 2018 is shown in the Table 1 below. The Peak Flows were calculated using the Average Daily Flows multiply by a peaking factor of 4. The Average Pumping Rate was calculated using the Total Monthly Flow divided by the pump run hours.

DATE	TOTAL MONTHLY FLOW (M ³)	AVERAGE DAILY FLOW (L/D)	PEAK FLOW (L/S)	AVERAGE PUMPING RATE (L/S)
May 2017	966.0	31163	1.44	1.32
June 2017	662.4	22079	1.02	1.01
July 2017	846.6	27309	1.26	1.12
August 2017	809.8	26122	1.21	1.58
September 2017	772.1	25739	1.19	1.70
October 2017	862.8	27,832	1.29	1.61
November2017	1282.1	42,737	1.98	1.38
December 2017	1678.2	54,135	2.51	0.69
January 2018	1016.1	32,778	1.52	1.30
February 2018	1117.9	39,925	1.85	1.68
March 2018	1403.0	45,257	2.10	1.61
April 2018	2095.4	69,847	3.23	1.34
May 2018	1191.4	38,432	1.78	1.23

Table 1: Flow Information of SPS No.4

As shown above, the existing pumps in the wet well were only able to pump at a maximum rate of 1.70 L/s during May 2017 to May 2018. The low pumping rates translated to low flow velocities in the forcemain and caused solids settling in the pipe, which in turn would increase the head loss and reduce pumping capacity. The pumps are probably de-rated due to their age (12 years), which also contributes to the low pumping rate.

Table 1 also shows that, most of the time, the peak flows coming into the SPS have exceeded the maximum pumping rate; therefore, pump upgrade is required at this SPS.

3 Proposed Work

As per existing Design Brief prepared by Stantec Consulting Ltd. dated March 2005 (see Appendix B), the wet well of the SPS No.4 has the capacity to manage a maximum flow of 12.3 L/s; however, due to the capacity limitation of the downstream sewage pumping station (SPS No.3) at the corner of Bailey Street and Main Street, the maximum flow that can be pumped from the SPS No.4 is restricted to 7.0 L/s.

To be conservative and not overwhelming downstream SPS No.3, a pumping rate of 6.0 L/s is proposed at the SPS No.4. As the maximum peak flow experienced at SPS No.4 was around 3.23 L/s (Table 1), this proposed pumping rate should be able to handle the existing peak flow and provide enough capacity for additional flows of future development. The pumping volumes and control level spacing are summarized in the Table 2 below.

Table 2: Pumping Volumes and Control Level Spacing

DESIGN PARAMETERS	VALUES
Design Flow Q (L/s)	6.0
Lag pump volume = $0.06 \times Q (m^3)$	0.36
Corresponding control level spacing (m)	0.077
Lead pump volume = $0.15 \times Q (m^3)$	0.90
Corresponding control level spacing (m)	0.19

The geodetic elevations for the control levels to meet the new pumping rate of 6.0 L/s are listed in Table 3.

REFERENCE	GEODETIC ELEVATION (M)	
Incoming sewer invert	70.96	
High level alarm	70.68	
Start lag level	70.53	
Start lead level	70.45	
Stop all pumps level	70.26	
Low level alarm	70.16	
Bottom of we well	69.86	

A system analysis was performed to size the sewage pumps for the proposed pumping rate. The analysis indicated that a pumping rate of 6.0 L/s corresponds to a total dynamic head of (TDH) of 7.5 m. TDH is calculated using the following parameters:

- Equivalent length of 75 mm and 100 mm diameter pipes, between pump and downstream manhole, are 30 m and 358 m respectively, including allowance for fittings.
- Friction factor and static head are for three conditions:
 - Low flow condition: C=120 and static head (at stop both pump level) = 73.50-70.26 = 3.24 m,
 - Average flow condition: C=130 and static head (at median pumping volume level) = 73.50 70.36 = 3.14 m, and
 - High flow condition: C= 140 and static head (at sewer invert) = 73.50-70.96 = 2.54 m.

Details of the TDH calculations are summarized in the Table 4 below.

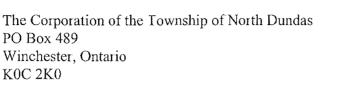
PARAMETER	VALUES		
Flow Conditions	Minimum Flow	Average Flow	Maximum Flow
Friction C	120	130	140
Q (L/s)	6.0	6.0	6.0
Total Equivalent Length for 75 mm	30	30	30

PARAMETER		VALUES	
SS Forcemain (m)			
Total Equivalent Length for 100 mm PVC Forcemain (m)	358	358	358
Safety Factor	1.10	1.10	1.10
Friction Loss (m)	4.23	3.65	3.18
Static Head (m)	3.24	3.1	2.54
Total Dynamic Head (TDH)	7.47	6.79	5.72
Velocity (m/s)	0.74	0.74	0.74

The flow velocity within the 100 mm diameter forcemain is calculated to be 0.74 m/s, meeting the minimum requirement of 0.6 m/s as per the MOECC Design Guidelines for Sewage Works (2008). Therefore the new pump would reduce solids deposition in the forcemain.

OCWA reached out to the pump supplier, Xylem Inc., with the above information to size the new pump. The most suitable submersible sewage pump, meeting the above requirements without changing the existing piping and controls, is the Flygt NP 3069 SH 3, which has a rated capacity of 5.95L/s and a TDH of 13 m. A copy of the pump specifications is attached in Appendix C. As the forcemain outlets to a sanitary sewer manhole, the additional head will be diminished in the manhole. Alternately, the additional head can be reduced or eliminated by chocking the valves in the discharging line.

This ECA amendment application only pertains to the pump upgrade, the remaining equipment and characteristics of the SPS No.4 stay the same as existing.


APPENDIX A

MOECC ECA (4037-6CAMCT)

10

Ministry Ministère of the de Environment l'Environnement AMENDED CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4037-6CAMCT

Site Location: Winchester Sewage Pumping Station South Side of Main Street North Dundas Township, United Counties of Stormont, Dundas & Glengarry, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

Sewage Pumping Station

- a *sanitary sewage pumping station No.4* with an initial capacity of 3.5 L/s to be constructed on south site of Main Street, approximately 500 m east of County Road No 31, consisting of a 2.44 m diameter wet well equipped with two (2) submersible pumps, one for duty and another for standby, each pump rated at 3.5 L/s against a total dynamic head of 4.5 m, complete with control panel, ultrasonic transducer and back up float switches, air vents, access ladder, discharge piping, by-pass connection, valves and all other appurtenances necessary to have a complete and operable pumping station, discharging to the proposed forcemain;
- the existing *sanitary sewage pumping station No.3* at the corner of Bailey Street and Main Street to be modified by replacing the pump impellers and discharge piping of the existing two (2) submersible pumps (one for duty and another for standby) After the modification, the pumping station has a rated capacity of 31.4 L/s at a total dynamic head of 25 m;

Sanitary Forcemain

• a 100 mm diameter *sanitary forcemain* from sewage pumping station No.4 to be constructed on Main Street, discharging to an existing sanitary manhole on Main Street;

in the Township of North Dundas, United Counties of Stormont, Dundas & Glengarry;

all in accordance with the application dated March 10, 2005 and received on March 18, 2005, and all supporting documentation and information, including design brief, final plans and specifications prepared by Stantec Consulting Ltd.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- 1. "Act" means the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended;
- 2 "*Certificate*" means this entire certificate of approval document, issued in accordance with Section 53 of the *Act*, and includes any schedules;
- 3. "Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Act;
- 4. "District Manager" means the District Manager of the Kingston District Office of the Ministry;
- 5. "*Ministry*" means the Ontario Ministry of the Environment;
- 6. "*Owner*" means The Corporation of the Township of North Dundas and includes its successors and assignees;
- 7 "*Regional Director*" means the Regional Director of the Eastern Region of the Ministry;
- 8 "Substantial Completion" has the same meaning as "substantial performance" in the <u>Construction Lien</u> Act; and
- 9. "*Works*" means the sewage works described in the *Owner*'s application, this *Certificate* and in the supporting documentation referred to herein, to the extent approved by this *Certificate*.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below.

TERMS AND CONDITIONS

1 GENERAL PROVISIONS

- 1.1 The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Works* is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 1 2 Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- 1.3 Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- 1.4 Where there is a conflict between the listed submitted documents, and the application, the application

shall take precedence unless it is clear that the purpose of the document was to amend the application

1.5 The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

2.1 The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

3 UPON THE SUBSTANTIAL COMPLETION OF THE WORKS

- 3.1 Upon the *Substantial Completion* of the *Works*, the Owner shall prepare a statement, certified by a Professional Engineer, that the works are constructed in accordance with this *Certificate*, and upon request, shall make the written statement available for inspection by Ministry personnel.
- 3.2 Within one year of the *Substantial Completion* of the *Works*, a set of as-built drawings showing the works "as constructed" shall be prepared. These drawings shall be kept up to date through revisions undertaken from time to time and a copy shall be retained at the *Works* for the operational life of the *Works*.

4. OPERATION AND MAINTENANCE

- 4.1 The *Owner* shall exercise due diligence in ensuring that, at all times, the *Works* and the related equipment and appurtenances used to achieve compliance with this *Certificate* are properly operated and maintained. Proper operation and maintenance shall include effective performance, adequate funding, adequate operator staffing and training, including training in all procedures and other requirements of this *Certificate* and the *Act* and regulations, adequate laboratory facilities, process controls and alarms and the use of process chemicals and other substances used in the *Works*.
- 4.2 The *Owner* shall prepare an operations manual within six (6) months of *Substantial Completion* of the *Works*, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the Works;
 - (b) inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the Works;
 - (d) procedures for the inspection and calibration of monitoring equipment;
 - (e) a spill prevention control and countermeasures plan, consisting of contingency plans and procedures for dealing with equipment breakdowns, potential spills and any other abnormal situations,

including notification of the District Manager; and

- (f) procedures for receiving, responding and recording public complaints, including recording any follow-up actions taken.
- 4.3 The Owner shall maintain the operations manual current and retain a copy at the location of the Works for the operational life of the Works Upon request, the Owner shall make the manual available to Ministry staff.

The reasons for the imposition of these terms and conditions are as follows.

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the *Owners* their responsibility to notify any person they authorized to carry out work pursuant to this *Certificate* the existence of this *Certificate*.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the *Works* are constructed in accordance with the approval and that record drawings of the *Works* "as constructed" are maintained for future references
- 4. Condition 4 is included to require that the *Works* be properly operated, maintained, funded, staffed and equipped such that the environment is protected and deterioration, loss, injury or damage to any person or property is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the *Owner* and made available to the *Ministry* Such a manual is an integral part of the operation of the *Works*. Its compilation and use should assist the *Owner* in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for *Ministry* staff when reviewing the *Owner*'s operation of the *Works*

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 7036-4JWPUE issued on May 2, 2000

In accordance with Section 100 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0 40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1 The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include

ł

3 The name of the appellant;

- 4 The address of the appellant;
- 5 The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8 The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon.

The Secretary* Environmental Review Tribunal 2300 Yonge St, 12th Floor P O Box 2382 Toronto, Ontario M4P 1E4 The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the

AND

Tribunal at: Iel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 16th day of May, 2005

A.A.hmed

Aziz Ahmed, P. Eng Director Section 53, *Ontario Water Resources Act*

NH/

c: District Manager, MOE Kingston District Office and Cornwall Area Office Jean Hebert, P Eng., Stantec Consulting Ltd.

es.

Ministry Ministère of the de Environment l'Environnement CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 1985-6CAMAT

The Corporation of the Township of North Dundas PO Box 489 Winchester, Ontario K0C 2K0

Site Location: Main Street

North Dundas Township, United Counties of Stormont, Dundas and Glengarry, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of

- sanitary sewers to be constructed on County Road No.31 and Main Street (County Road No.43), in the Township of North Dundas, United Counties of Stormont, Dundas and Glengarry;

all in accordance with the application dated March 10, 2005 and received March 18, 2005, including final plans and specifications prepared by Stantec Consulting Ltd.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply

- (1) "*Certificate*" means this entire Certificate of Approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*, and includes any schedules;
- (2) "*Owner*" means The Corporation of the Township of North Dundas, and includes its successors and assignees; and
- (3) "*Works*" means the sewage works described in the *Owner*'s application, this *Certificate* and in the supporting documentation referred to herein, to the extent approved by this *Certificate*

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below

TERMS AND CONDITIONS

- 1 GENERAL CONDITIONS
- 1.1 The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

- 1.2 Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- 1.3 Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- 1.4 Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application
- 15 The requirements of this *Certificate* are severable If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

2.1 The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

The reasons for the imposition of these terms and conditions are as follows.

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the *Owners* their responsibility to notify any person they authorized to carry out work pursuant to this Certificate the existence of this *Certificate*.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R S O. 1990, Chapter 0 40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state

- 1 The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2 The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed

The Notice should also include

3. The name of the appellant;

 $\xi' :$

- 4 The address of the appellant;
- 5 The Certificate of Approval number;
- 6. Ihe date of the Certificate of Approval;
- 7 The name of the Director;
- 8 The municipality within which the works are located;

And the Notice should be signed and dated by the appellant

This Notice must be served upon

 The Secretary*

 Environmental Review Tribunal

 2300 Yonge St, 12th Floor

 P O Box 2382

 AND

 Toronto, Ontario

 M4P 1E4

The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act

DATED AT IORONTO this 16th day of May, 2005

A. Ahmed

Aziz Ahmed, P Eng Director Section 53, Ontario Water Resources Act

NH/

c: District Manager, MOE Kingston District Office and Cornwall Area Office Jean Hebert, P.Eng., Stantec Consulting Ltd.

APPENDIX B

Stantec Design Brief (March 2005)

S. 64 (16)

-utils Colde

11.169696.0

Sectional's

States and

CONTRACTOR SCI

NAME OF

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

PUMP STATION DESIGN BRIEF

Project Number: 1634-00533

Prepared by:

Stantec Consulting Ltd.

400-1505 Laperriere Avenue Ottawa, Ontario K1Z 7T1

Prepared for:

Township of North Dundas

636 St. Lawrence Street, P.O. Box. 489 Winchester, Ontario K0C 2K0

March, 2005

12,125,12

and the party of t

A CONTRACTOR

The second

State State

and the second second

1000

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

Table of Contents

1.0	INTRODUCTION	1.1
	PURPOSE OF APPLICATION	
	EXISTING SEWAGE COLLECTION, PUMPING AND TREATMENT SYSTEM	1.1
2.0	SEWAGE COLLECTION AND PUMPING SYSTEM	2.1
2.1	SERVICED AREA AND DESIGN FLOW RATES	2.1
2.2	GRAVITY SEWER	2.1
2.3	SEWAGE PUMPING STATION NO. 4 WET WELL	2.2
	SEWAGE PUMPING STATION NO. 4 PUMP SELECTION TO SERVICE INITIAL	
	OF DEVELOPMENT	2.3
2.5	MODIFICATIONS TO SEWAGE PUMPING STATION PUMP NO.3 AT BAILEY ST	
2.6	WINCHESTER LAGOON RESIDUAL CAPACITY	2.8
3.0	DRAWINGS	3.1

LIST OF APPENDICES

Appendix I	Certificate of Approval	(Sewage) No.	7036-4JWPUE date	d May 3 rd , 2000
------------	-------------------------	--------------	------------------	------------------------------

- Appendix II Gravity Sewer Design flow rates
- Appendix III Flow and Head low Calculations for Sewage Pumping Station No.4 on Main Street
- Appendix IV Pump Curve at Sewage Pumping Station No. 4 on Main Street
- Appendix V Pump Curve at Bailey Street Sewage Pumping Station
- Appendix VI Flow and Head Low Calculations for Bailey Street Sewage Pumping Station

1.0 Introduction

1.1 PURPOSE OF APPLICATION

The purpose of this application is to amend the existing Certificate of Approval (Sewage) No. 7036-4JWPUE dated May 3rd, 2000 (refer to Appendix I), for the construction of a proposed sewage pumping station, forcemain, and modification of an existing sewage pumping station. These upgrades and/or modifications are required for serviceability of the west portion of the community of Winchester.

Although the civil works (i.e. inlet gravity sewer, wet well and forcemain) are designed to service the ultimate population within the drainage area, the mechanical works associated with this application (i.e. the sewage pumps) are to be selected to service a proposed commercial development located at the intersection of County Road 31 and Main Street and an existing commercial property located on the east side of County Road 31, approximately 250 meters north of the intersection.

On behalf of the Owner, The Corporation of the Township of North Dundas, the Ontario Clean Water Agency (OCWA) has been retained as the Operating Authority for the Sewage Collection and Treatment Facilities. As outlined in the Sanitary Servicing Assessment Report prepared by Stantec Consulting Ltd. on June 25, 2005, the treatment facilities can accommodate the additional flows associated with the additional population to be serviced by the new gravity sewer. An application for the proposed sanitary sewer has been submitted under a separate cover.

1.2 EXISTING SEWAGE COLLECTION, PUMPING AND TREATMENT SYSTEM

The Community of Winchester sewage collection and treatment system consists of the following:

- Approximately 5 km of gravity sewers, with diameters ranging between 200 and 300 mm diameter.
- A sewage pumping station located on St-Lawrence Street, servicing the south portion of Winchester; no sewage from the new sewage drainage area will be transferred to this station.
- Two (2) existing sewage pump stations, the first is located near the intersection of Main Street and Bailey Avenue (referred to as Pumping Station No.3) and the second near the intersection of Ottawa Street and Dufferin Street (referred to as Ottawa Street Pump Station). The rated capacity of Pumping Station No.3 is 24.39 L/s and based on the proposed flows will require some upgrade. Ottawa Street Pump Station has a rated capacity of 90L/s which is capable to proposed flows, considering a peak hour factor of 3.54.

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

A DESCRIPTION

indiates (pro

Sarahan Sarah

N. S. C. S.

日日の

14 miles

• A waste stabilization pond, consisting of five cells, partial aeration, phosphorus removal facilities, and pumping facilities discharging to the Henderson Drain. Treated effluent eventually reaches the Castor River and the South Nation River. The Lagoon's rated capacity is 2,220 m³/d. Final Effluent is discharged during the Spring and Fall seasons.

2.0 Sewage Collection and Pumping System

2.1 SERVICED AREA AND DESIGN FLOW RATES

The area to be ultimately serviced by the new sewage pumping station will include the west portion of the Community of Winchester, Dawley Drive, the future development located west of Highway #31 and approximately 500 meters north of Main Street along County Road 31. This area consists into the following (refer to Figure 1):

- A commercial area, located at the corner of Highway #31 and Main Street, including the existing Dean's Food Store and the proposed Tim Hortons.
- An area located north of Main Street, along the east side of Highway #31, consisting of an existing motel and restaurant.
- A residential and commercial development along Dawley Drive and on Main Street from Highway #31 to the proposed pumping station.
- A new development located along the extension of Main Street, west of Highway #31.

For the initial phase of development, Tim Hortons, the motel and restaurant (Country Kitchen) will be serviced. The corresponding total peak hour flow is 3.29 L/s, as stated in Appendix II. For initial development pump selection, we consider a flow rate of 3.5 L/s, which is the minimum flow generated by a commercial quality submersible pump (ITT FLYGT). Smaller domestic use pumps developing lower flow rates are available, however would not be suitable for the intense service conditions associated with a municipal system.

The ultimate service sewage flow within this drainage area is established to be12.3 L/s at peak hour. The new sewage pumping station wet well is to be designed to accommodate that flow.

2.2 GRAVITY SEWER

Under a separate cover, an application for a Certificate of Approval has been submitted to the MOE for the installation of a sanitary sewer for the serviceability of the following areas:

- Approximately 555 meters of 250 mm diameter gravity sewer on Main Street, between County Road 31 and the proposed sewage pumping station;
- Approximately 300 meters of 200 mm diameter gravity sewer on Main Street, east of the proposed pumping station, toward Bailey Street;
- Approximately 248 meters of 200 mm diameter gravity sewer along Highway #31, north of Tim Hortons.

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

The detailed design calculations are included under Appendix II. As per the MOE Guidelines, minimal slope have been retained, in order to limit excavation depth near pumping station. Flow rate generated by the commercial area for the first years of development is 3.29 L/s.

2.3 SEWAGE PUMPING STATION NO. 4 WET WELL

The preferred location of the proposed sewage pumping station is the Winchester Well No.4 site, which is currently owned by the Municipality. This site is located on Main Street approximately 500 meters east of County Road 31. This well pump station is no longer in operation however the facility still exists. Three phase power supply and telemetry facilities available on site are to be re-used to service the new Winchester Sewage Pumping Station No.4.

The wet well design is based on the ultimate population flow, which is 12.3 L/s. Station diameter is to be 2.44 meters (8'). The station cross-sectional area is 4.67 m². The corresponding pumping volumes and control level spacing is as follow:

Design flow Q	12.3 L/s
Lag pump volume	
= 0.06 X Q Control level spacing	0.74 m ³ 0.16 m
Lead pump volume	
= $0.15 \times Q$ (m ³) Control level spacing	1.84 m ³ 0.39 m

The spacing between the incoming gravity sewer invert and the bottom of the wet well is established as follow:

- = 150 mm between incoming sewer invert and start lag pump level
 - + 160 mm between start lag and start lead pump levels
 - + 390 mm between start lead and stop pump levels
 - + 100 mm between stop all pump level and low level alarm float level
 - + 300 mm low level alarm float level and bottom of wet well (typical value for submersible pumps)
- = 1,100 mm between incoming sewer invert and bottom of wet well.

In order to meet the ultimate population requirements, the geodetic elevations of wet well are as follow:

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

<u>Reference</u>	Geodetic Elevation (m)
Top of wet well:	76.80
Finished ground level:	76.50
Intermediate platform:	73.80
Incoming sewer invert:	70.96
Bottom of wet well:	69.86

2.4 SEWAGE PUMPING STATION NO. 4 PUMP SELECTION TO SERVICE INITIAL PHASE OF DEVELOPMENT

The target design flow for pump selection is the fifteen-year design flow, i.e. 3.4 L/s. This flow is inferior to the ultimate pumping station capacity, but is sufficient to meet the proposed phase 1 needs (set at 3.29 L/s, as shown in Appendix II). A higher pump flow rate would have longer pump cycle duration, and would generate nauseous odors at the station and as such the shorter pump cycles associated with a smaller pump will avoid potential odor problems. For pumping volumes and control level spacing considerations, we rounded up the flow to 3.5 L/s, are the following:

Design flow Q	3.5 L/s
Lag pump volume = 0.06 X Q	0.21 m ³
Corresponding control level spacing	0.045 m
Lead pump volume = 0.15 X Q	0.52 m ³
Corresponding control level spacing	0.11 m

The geodetic elevations for the control levels, to meet the phase 1 design requirements, are as follow:

Reference	Geodetic Elevation (m)
Incoming sewer invert:	71.45
High level alarm float:	. 70.57
Start lag level:	70.42
Start lead level:	70.37
Stop all pumps level:	70.26
Low level alarm (stop all pumps):	70.16
Bottom of wet well:	69.86

A system analysis was performed to size the sewage pumps for this application. The system curve indicates that a flow of 3.4 L/s corresponds to a total dynamic head (TDH) of 4.50 m. The smallest available heavy duty ITT FLYGT submersible sewage pump (ie. model CP3045.180 HT with a 74 mm diameter impeller and 50 mm diameter discharge) is capable of handling the proposed flow rate.

Total dynamic head is calculated using the following design parameters (pump curve calculations are included under Appendix III):

- Equivalent length of 100 mm diameter pipe, between pump and gravity sewer manhole = 549 m, including allowance for fittings.
- Friction factor and static head are reviewed for three conditions
 - Low flow conditions: C = 120 and static head (at stop both pump level) = 73.50 70.26 m = 3.24 m,
 - Average flow conditions: C = 130 and static head (at median pumping volume level) = 73.50 70.31m = 3.19 m;
 - High flow conditions: C = 120 and static head (at sewer invert) = 73.50 71.45 m = 2.05 m. Pump motor is to be sized to meet this condition.

The flow velocity within the 100 mm diameter forcemain (0.38 m/s) is inferior to the self-cleaning velocity of 0.8 m/s. A forcemain bypass piping and valve assembly will be provided at the station, to facilitate forcemain-cleaning procedures in the first years of the development. Long-term flow rate will be sufficient to achieve the self-cleaning velocity.

The existing 60 A, 600v/3ph/60Hz electrical entrance will provide enough capacity to meet the new sewage pump starting load (12 A).

No standby power generator is to be installed at the station at this stage; instead, a manual transfer switch and an exterior wall mounted receptacle will be provided to connect a portable generator. Existing telemetry facilities will be programmed to send an alarm signal to the plant operator in case of a high level alarm and in case of loss of power. Volume provided within the wet well and the sewer, between the stop pump level and the lowest basement, is sufficient to provide two hours of retention volume.

The existing natural gas feed line along Main Street is servicing the pump building heater. The Municipality will install at a later date a natural gas powered generator outside the building, to meet the ultimate population sewer pump power requirements.

Characteristics of Sewage Pumping Station No. 4 pumps are the following:

- Cross-sectional area for a 2.44 m diameter wet well = 4.67 m²
- Pump model: ITT FLYGT CP3045.180 HT, with 2 HP 600v/3ph/60Hz motor and 74 mm diameter impeller.
- Pump performance, 3.4 L/s at a total dynamic head of 4.5 m.
- Control level device: Milltronics MultiRanger.

WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

- Minimum water level for pump operation (according to ITT FLYGT) = 260 mm.
- Discharge piping and valves: 75 mm diameter elbows, riser, ball valve, and gate valve.
- Forcemain: 100 mm diameter, 343 m long, with 45° elbows
- Discharge at gravity sewer manhole: Geodetic Elevation = 73.50 m

Pump curve is shown in Appendix IV.

2.5 MODIFICATIONS TO SEWAGE PUMPING STATION PUMP NO.3 AT BAILEY STREET

The existing sewage pumping station at the corner of Bailey Street and Main Street (hereafter designated as Pumping Station No.3) was upgraded in 2000, in order to service the various developments within the station drainage area. Each of the two 15 HP (11.2 kW) sewage pumps can develop the peak hour design flow rate of 24.39 L/s. A 40 kW diesel generator has been installed in 2002 to service the station.

The new sewage pumping station at Winchester Well No. 4 site will discharge the fifteen-year design flow (i.e. 3.0 L/s) to the existing Pumping Station No.3. Minor mechanical modifications at Pumping Station No.3, including the replacement of pump impeller and discharge piping will be sufficient to handle the above additional flow. No electrical upgrade is required at this time. Based on our preliminary review, major upgrades will be required at Pumping Station No.3 when the proposed Winchester Well No.4 sewage Pump Station is upgraded for ultimate flow.

Characteristics of the Pumping Station No.3 are the following:

- Cross-sectional area = 2.13 m X 2.13 m = 4.54 m²
- Pump model: ITT FLYGT CP3140.180 HT,
- with 15 HP 600v/3ph/60Hz motor and 248 mm diameter impeller.
- Actual pump performance, as per Certificate of Approval No. 7036-4JWPUE dated May 2nd, 2000: 24.39 L/s at a total dynamic head of 71 ft (21.64 m)
- The Certificate has a typo error (71 m).
- Control level device: Milltronics MultiRanger.
- Minimum water level for pump operation (according to ITT FLYGT) = 260 mm.
- Discharge piping and valves: 100 mm diameter elbows, riser, ball valve, and gate valve.
- Forcemain: 150 mm diameter, 611 m long, with eight 45° elbows
- Discharge at gravity sewer manhole: Geodetic Elevation = 79.25 m

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

The revised pump design flow is 31.4 L/s (= 24.39 L/s from existing committed area plus 7.0 L/s from new station).

The proposed modifications consist into the following:

- Replacing the existing 248 mm diameter impeller with a 265 mm diameter impeller (referenced under Curve No. 63-480-00-3855, see Appendix V).
- Replacing the existing 100 mm diameter discharge piping and valve assembly by 150 mm diameter facilities.
- Adjusting control level elevations at ultrasonic transducer to meet new flow requirements.
- Adjusting platform and trash basket to meet new requirements; platform will be relocated above the revised high level alarm level, in order to avoid flooding under normal operation conditions.

The design pumping volumes and corresponding elevations are the following:

Design flow Q	31.4 L/s
Lag pump volume	
= 0.06 X Q Control level spacing	1.88 m ³ 0.41 m
Lead pump volume	
= 0.15 X Q (m ³) Control level spacing	4.71 m ³ 1.04 m

The revised geodetic elevations for Pumping Station No.3 are as follows:

Stantec

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

Reference	Geodetic Elevation (m)
Top of station:	75.82
Ground Level:	75.67
Overflow invert:	73.97
Revised platform elevation:	70.60
High level alarm float:	70.43
Start lag level:	70.33
Original platform elevation:	70.18
Start lead level:	69.92
Incoming sewer invert:	69.70
Stop all pumps level:	68.88
Low level alarm (stop all pumps):	68.84
Bottom of wet well:	68.58

Total dynamic head was calculated using the following design parameters (refer to Appendix VI for detailed calculations):

- Equivalent length of 150 mm diameter pipe, between pump and gravity sewer manhole = 69 m, including allowance for fittings.
- Friction factor and static head are reviewed for three conditions
 - Low flow conditions: C = 120 and static head (at stop both pump level) = 79.25 m - 68.88 m = 10.37 m, with one pump.
 - Q = 30.0 L/s at TDH = 25.0 m.
 - Average flow conditions: C = 130 and static head (at median pumping volume level) = 79.25 m (69.92 m + 68.88 m)/2 = 9.85 m, with one pump.
 - Q = 31.4 L/s at TDH = 25.0 m.
 - High flow conditions: C = 120 and static head (at overflow level)
 = 79.25 73.97 m = 5.28 m, with both pumps in operation.
 - \circ Q = 44.0 L/s at TDH = 28.0 m, with two pumps (22.0 L/s per pump).

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

2.6 WINCHESTER LAGOON RESIDUAL CAPACITY

The available Winchester residual capacity is adequate to accept the supplementary flow from the new sewage collection system. The Winchester Lagoons has a total capacity of 2,220 m³/d. The average daily flow rate monitored in 2003 and 2004 were 1,647 and 1,547 m³/d respectively. The sewage collection system expansion toward the west end of Winchester can therefore take place.

The existing Winchester main sewage pumping station has a capacity of 90 L/s at peak hour. The station has been designed to match the lagoon capacity (2,220 m^3 /d, or 25.5 L/s), with a 3.54 peak factor. The actual main pumping station is adequate to service the additional commercial area (supplementary flow of 3.5 L/s), without any modification.

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

3.0 DRAWINGS

S. S. S. Mark

SARAN SEC

2.4,454365

1268830

NAMES.

Contraction of the local distribution of the

1.5.10

STATES OF

な主義の法

The drawings showing the implementation of the improvements to the works are included under separate cover.

Stantec Consulting Ltd.

flow flettest

dean Hebert, M.A.Sc., ing., P.Eng. Environment Engineer

Stantec

10020830900-

12.965/4982

のないのないで、

Sold Market

30000

AND DESCRIPTION OF

Î

line all

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX I

CERTIFICATE OF APPROVAL (SEWAGE) NO. 7036-4JWPUE DATED MAY 3RD, 2000

のようなのないないないではないない。 おおいた きんだい たいないので アイ・シートマイト

3AM Township of North Dundas

North

Dundas

7036-4JWPUE DATED MAY 3RD, 2000

February 5, 2001

Ministry of the Environment 2 St. Clair Avenue, West Floor 12A Toronto, Ontario M4V 1L5

Attention: Mr. Mohamed Dhalla, P. Eng Director Section 53, Ontario Water Resources Act

Reference: Main Street Pumping Station Township of North Dundas

Dear Mr. Dhalla:

The Main Street Pumping Station is a Township owned facility that was originally constructed in the early 1970's. Both the municipality and OCWA (the agency responsible for operating the facility on behalf of the municipality) have attempted in vain to locate the "Certificate of Approval" for the original construction. The said pumping station now requires upgrading as a result of a new subdivision development.

In early 2000 the Developer that requires the pumping station upgrade submitted an "Application for Approval" for the upgrade to your Ministry. This resulted in your Ministry issuing "Certificate of Approval" Number 7036-4 JWPUE (copy attached). The said "Certificate of Approval" was issued to the Developer.

It has been brought to our attention that because the municipality owns the station, the aforementioned certificate should correctly have been issued to the municipality, not the numbered company owned by the Developer (i.e. indeed when the application was submitted to your Ministry, specific mention should have been imade that the developer applying for the certificate was doing so acting as an agent for the municipality).

At this time, therefore, we are requesting that "Certificate of Approval" Number 7036-4 JWPUE be amended to reflect that fact that the Township of North Dundas is the owner of the works. To this end we are enclosing a cheque in the amount of \$200,00 that we understand is required to cover the administrative processing costs.

Please do not hesitate to call if you have any questions or require additional clarification.

Sincerely,

BARRENARK

500 CO 100

CONSTRUCTION OF

ALLER CLEAR A

Howard F. Smith Clerk Administrator Township of North Dundas

encl.

Analyzana, 24. 2004 10:53AM Township of North Dundas -2001, 02:10pm From-STANTEC CONSULTING LTD No. 8927 03/02: 6137227788 09/01 TUE 15:35 FAX 513 774 5595 THP NORIA DUNDAS CERTIFICATE OF APPROVAL Minlstry Ministère MUNICIPAL AND DOWATE SEWAGE WORKS of the de NUMBER 7036-4JWPUE Environment **l'Environnement** ÷ •.

> 1332484 Ontario Inc. R.R. #1 South Mountain, Ontario K0E 1W0

te Location: Winchester Pumping Station, South Side of Main Street, in the Township of North Dundas, United Counties of Stormont, Dundas & Glengarry

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

ograding the existing sewage pumping station by replacing the existing pumps with two(2) new submersible wage pumps (one duty, one standby), each pump capable of sendling 24.39 L/s against a total dynamic head [71m;

I in accordance with the Application for Approval of Municipal and Private Water and Sewage Works and Guy-Racine Subdivision, Upgrade to Winchester Pump Station Report", dated November 1999, as prepared and submitted for approval by Novatech Engineering Consultants Ltd.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as mended, you may by written notice served upon me and the Environmental Appeal Board within 15 days after eccipt of this Notice, require a hearing by the Board. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and; The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The Notice should also include:

The name of the appellant;

The address of the appellant;

The Cenificate of Approval number;

The date of the Certificate of Approval;

The name of the Director;

The municipality within which the works are located;

And the Notice should be signed and dated by the ap lant.

24. 2004 10:53AM Township of North Dundas 5-2001 D2:11pm From-STANTEC CONSULTING LTD 5137222799 No.8927 T-734 Y.U04/06 09/01 TUR 15:36 FAI 613 774 5899 THP NOKIH DUNDAD This Notice must be served upon: The Director Secremy" Section 53, Ontario Water Resources Act rimamental Appeal Board Ministry of the Environment 00 Yange St., 12th Floor 2 St Clair Avenue West, Floor 13A".). Box 2382 AND ronto, Ontario Toronto, Ontario PIE+ M4V ILS Further information on the Environmental Appeal Roard's requirements for an appeal can be obtained directly from the Board at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca/ e above noted sewage works are approved under Section 53 of the Ontario Rater Resources Act. DATED AT TORONTO this 2nd day of May, 2000 THIS IS A TTUE COPY OF THE Mollamed Dhalla, P.Eng. ORIGINAL NOTICE MAILED Director Ontario Water Resources Act ON Hay 3RD Section 53 ,2000 SKGNED =/ District Manager, MOE Cornwall

Mr. Greg MacDonald, P.Eng., Novatech Engineering Consultants Ltd.

Stantec

Second Second

. Support

SUSSERVE.

Section 1995

and a stability of the second

and the second

APPENDER.

1.000000

1000000000

elaistinta a

MARKARAN

Charles and

CONTRACTOR OF

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX II

GRAVITY SEWER DESIGN flow rates

SANITARY SEWER CALCULATION SHEET

Manning's n =															r													
LO	CATION			R	ESIDENTIA	L AREA ANI	D POPULA	TION		CO	MM		INDUST		IN	ST	C+I+I		INFILTR					٢	PIPE			·
STREET	FROM	TO	AREA	# UNITS	POP.	CUMUL	ATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	PEAK	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	LENGTH	ACTUAL	NOM.	SLOPE	CAP.		Q/Qcap
	M.H.	M.H.				AREA	POP.	FACT.	FLOW		AREA		AREA	FACTOR		AREA	FLOW	AREA	AREA	FLOW	FLOW		DIA.	DIA.		(FULL)	(FULL)	(%)
			(ha)			(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(per MOE)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(mm)	(%)	(l/s)	(m/s)	,
County Road 31	101	102	0.00	0.00	0	0.00	0	4.00	0.00	1.50	1.50			0.00		0.00	0.35	1.50	1.50	0.42	0.77	60.00	0.20	200	0.28	17.35	0.55	4.4%
County Road 31	102	103	0.00	0.00	0	0.00	0	4.00	0.00	0.00	1.50			0.00		0.00	0.35	0.00	1.50	0.42	0.77	100.00	0.20	200	0.28	17.35	0.55	4.4%
County Road 31	103	104	0.00	0.00	0	0.00	0	4.00	0.00	0.00	1.50			0.00		0.00	0.35	0.00	1.50	0.42	0.77	65.00	0.20	200	0.28	17.35	0.55	4.4%
County Road 31	104	401	0.00	0.00	0	0.00	0	4.00	0.00	0.00	1.50			0.00		0.00	0.35	0.00	1.50	0.42	0.77	22.00	0.20	200	0.28	17.35	0.55	4.4%
Main Street	409	408	1.77	3.00	9	1.77	. 9	4.00	0.15	0.00	0.00			0.00		0.00	0.00	1.77	1.77	0.50	0.64	95.00	0.20	200	0.50	23.19	0.74	2.8%
Main Street	408	407	3.21	2.00	6	4.98	15	4.00	0.24	0.00	0.00			0.00		0.00	0.00	3.21	4.98	1.39	1.64	23.00	0.20	200	0.40	20.74	0.66	7.9%
Main Street	407	406	1.34	2.00	6	6.31	21	4.00	0.34	0.00	0.00			0.00		0.00	0.00	1.34	6.31	1.77	2.11	125.00	0.20	200	0.40	20.74	0.66	10.2%
Main Street	400	401	0.00	0.00	0	0.00	0	4.00	0.00	0.81	2.31		-	0.00		0.00	0.53	0.81	2.31	0.65	1.18	60.00	0.25	250	0.22	27.89	0.57	4.2%
Main Street	401	402	0.00	0.00	0	0.00	0	4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	120.00	0.25	250	0.22	27.89	0.57	4.2%
Main Street	402	403	0.00	0.00	0	0.00	. 0	. 4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	120.00	0.25	250	0.22	27.89	0.57	4.2%
Main Street	403	404	0.00	0.00	0	0.00	0	4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	99.00	0.25	250	0.22	27.89	0.57	4.2%
Main Street	404	405	0.00	0.00	0	0.00	0	4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	99.00	0.25	250	0.22	27.89	0.57	4.2%
Main Street	405	406	0.00	0.00	0	6.31	21	4.00	0.34	0.00	2.31			0.00		0.00	0.53	0.00	8.62	2.41	3.29	99.00	0.25	250	0.22	27.89	0.57	11.8%
Main Street	406	PS	0.00	0.00	0	6.31	21	4.00	. 0.34	0.00	2.31			0.00		0.00	0.53	0.00	8.62	2.41	3.29	13.00	0.25	250	0.22	27.89	0.57	11.8%
							·.																· · ·		i			••••••••
	······································	· · · · · · · · · · · · · · · · · · ·		······		DESIGN	PARAME	TERS			·		·		Designed	I: MPT	<u></u>	PROJEC	T: Winche	ester San	itary Sew	er Extensio	n - Phase	e 1				
Average Daily Flow	v =		350	l/p/day				Industrial Pea	ak Factor =		as per MOE	Graph																1
Comm/Inst Flow =			5000	L/ha/da				Extraneous F	low =		0.28	L/s/ha			Checked	: JH		LOCATIC	N: Towns	ship of N	orth Dund	as						
Industrual Flow =				L/ha/da				Minimum Vel	ocity =		0.60	m/s								•								I
Max Res. Peak Fac	ctor =		4.00					Mannings n =			0.013	-																1
Commerical / Inst p	beak Factor =	<u>-</u>	4.00					Persons per	Unit =		3.0	persons/un	it		Dwg. Ref	ference:		File Ref.:			Date:	9-Mar-05				S	heet No.	1 OF 1

Stantec

- 812 V V

948⁷⁷3349

1.6

1000

2012/2012

STOCK I

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX III

FLOW AND HEAD LOW CALCULATIONS FOR SEWAGE PUMPING STATION NO.4 ON MAIN STREET

100456185

108820105

States and

S. THEFE

ill and the

A STATE

Surger State

10220200

Main Street Sewage Pumping Station, located at Winchester Well No.4 Site Initial flow = 3.5 L/s, servicing limited commercial area

Minimum flow condition, at stop pump level, with maximum friction factor (C = 120)

Q	(L/s)	0.0	1.0	2.0	3.0	4.0
Friction C		120	120	120	120	120
Length - 100 mm dia. FM	(m)	549	549	549	549	549
Safety factor		1.03	1.03	1.03	1.03	1.03
Diameter	(mm)	100	100	100	100	100
Friction loss - 100 mm FM	(m)	0.00	0.16	0.59	1.26	2.14
Static head	(m)	3.24	3.24	3.24	3.24	3.24
TDH	(m)	3.24	3.40	3.83	4.50	5.38
Velocity within 150 mm FM	(m/s)	0.00	0.13	0.25	0.38	0.51

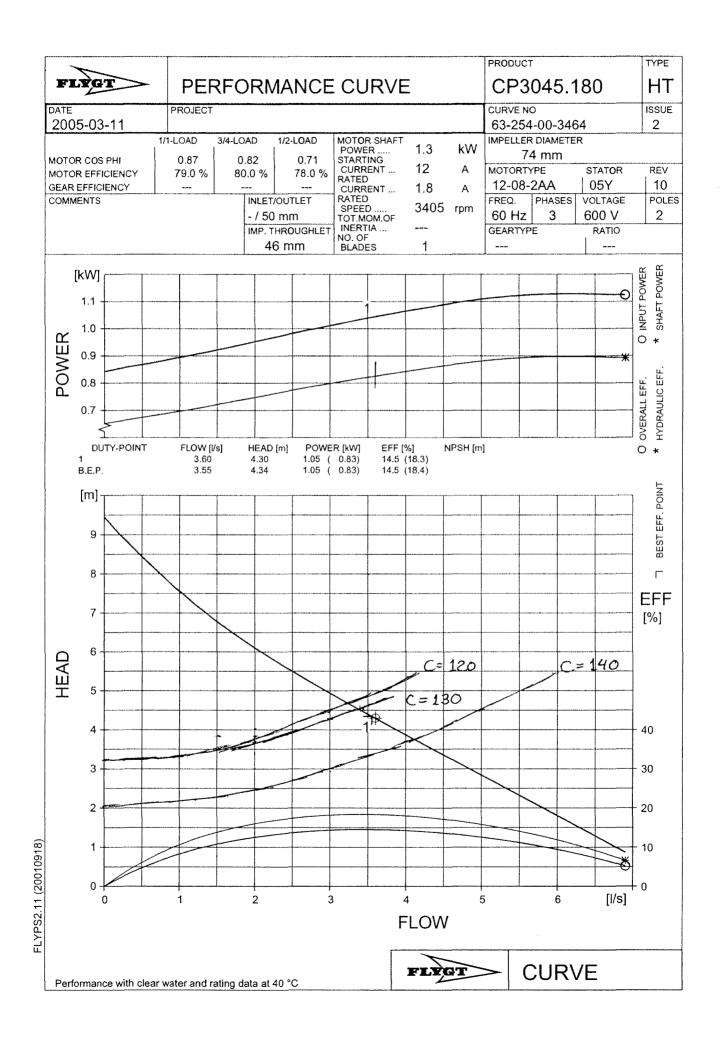
Average flow condition, at median pumping level, with average friction factor (C = 130)

Q	(L/s)	0.0	2.0	3.0	3.5	3.7
Friction C		130	130	130	130	130
Length - 150 mm dia. FM	(m)	549	549	549	549	549
Safety factor		1.03	1.03	1.03	1.03	1.03
Diameter	(mm)	100	100	100	100	100
Friction loss - 150 mm FM	(m)	0.00	0.51	1.08	1.44	1.60
Static head	(m)	3.19	3.19	3.19	3.19	3.19
TDH	(m)	3.19	3.70	4.27	4.63	4.79
Velocity within 150 mm FM	(m/s)	0.00	0.25	0.38	0.45	0.47

Maximum flow condition, at invert level, with minimum friction factor (C = 140)

Q	(L/s)	0.0	3.0	4.0	5.0	6.0
Friction C		140	140	140	140	140
Length - 150 mm dia. FM	(m)	549	549	549	549	549
Safety factor		1.03	1.03	1.03	1.03	1.03
Diameter	(mm)	100	100	100	100	100
Friction loss - 150 mm FM	(m)	0.00	0.94	1.61	2.44	3.42
Static head	(m)	2.05	2.05	2.05	2.05	2.05
TDH	(m)	2.05	2.99	3.66	4.49	5.47
Velocity within 150 mm FM	(m/s)	0.00	0.38	0.51	0.64	0.76

Compiled by:


Stantec

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX IV

.

PUMP CURVE AT SEWAGE PUMPING STATION NO.4 ON MAIN STREET

Contraction of the

ALCONDED.

Stantec

582 372 AFC

-Addeted apply

Conference (Const

SPECIFICATION -

Souther the

alerstation.

Saration of

K

Participant and

Catalana San

Section 201

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX V

PUMP CURVE AT BAILEY STREET SEWAGE PUMPING STATION

Station No.3 at corner of Bailey Street and Main Street Pump impeller and discharge piping replaced in order to increase flow rate from 24.39 to 31.4 L/s

Minimum flow condition, at stop pump level, with maximum friction factor (C = 120)

Q	(L/s)	0.0	20.0	25.0	30.0	30.7	35.0
Friction C		120	120	120	120	120	120
Length - 150 mm dia. FM	(m)	635.9	635.9	635.9	635.9	635.9	635.9
Safety factor		1.05	1.05	1.05	1.05	1.05	1.05
Diameter	(mm)	150	150	150	150	150	150
Friction loss - 150 mm FM	(m)	0.00	7.00	10.60	14.88	15.54	19.82
Static head	(m)	10.37	10.37	10.37	10.37	10.37	10.37
TDH	(m)	10.37	17.37	20.97	25.25	25.91	30.19
Velocity within 150 mm FM	(m/s)	0.00	1.13	1.41	1.70	1.74	1.98
TDH	(ft)	34.0	57.0	68.8	82.9	85.0	99.1

Average flow condition, at median pumping level, with average friction factor (C = 130)

Q	(L/s)	0.0	20.0	25.0	30.0	31.4	32.5
Friction C		130	130	130	130	130	130
Length - 150 mm dia. FM	(m)	635.9	635.9	635.9	635.9	635.9	635.9
Safety factor		1.05	1.05	1.05	1.05	1.05	1.05
Diameter	(mm)	150	150	150	150	150	150
Friction loss - 150 mm FM	(m)	0.00	6.04	9.14	12.83	13.96	14.88
Static head	(m)	9.85	9.85	9.85	9.85	9.85	9.85
TDH	(m)	9.85	15.89	18.99	22.68	23.81	24.73
Velocity within 150 mm FM	(m/s)	0.00	1.13	1.41	1.70	1.78	1.84
TDH	(ft)	32.3	52.1	62.3	74.4	78.1	81.1

Maximum flow condition, at o	verflow level,	erflow level, with minimum friction factor (C = 140)					pumps :
						= 2	X 22 L/s
Q	(L/s)	0.0	20.0	25.0	30.0	31.4	44.0
Friction C		140	140	140	140	140	140
Length - 150 mm dia. FM	(m)	635.9	635.9	635.9	635.9	635.9	635.9
Safety factor		1.05	1.05	1.05	1.05	1.05	1.05
Diameter	(mm)	150	150	150	150	150	150
Friction loss - 150 mm FM	(m)	0.00	5.26	7.96	11.18	12.16	22.78
Static head	(m)	5.28	5.28	5.28	5.28	5.28	5.28
TDH	(m)	5.28	10.54	13.24	16.46	17.44	28.06
Velocity within 150 mm FM	(m/s)	0.00	1.13	1.41	1.70	1.78	2.49
TDH	(ft)	17.3	34.6	43.4	54.0	57.2	92.0

Compiled by

No. of the local division of the local divis

Stantec Consulting Ltd

Stantec

-startiger

wanteges.

19453524St

THE REAL

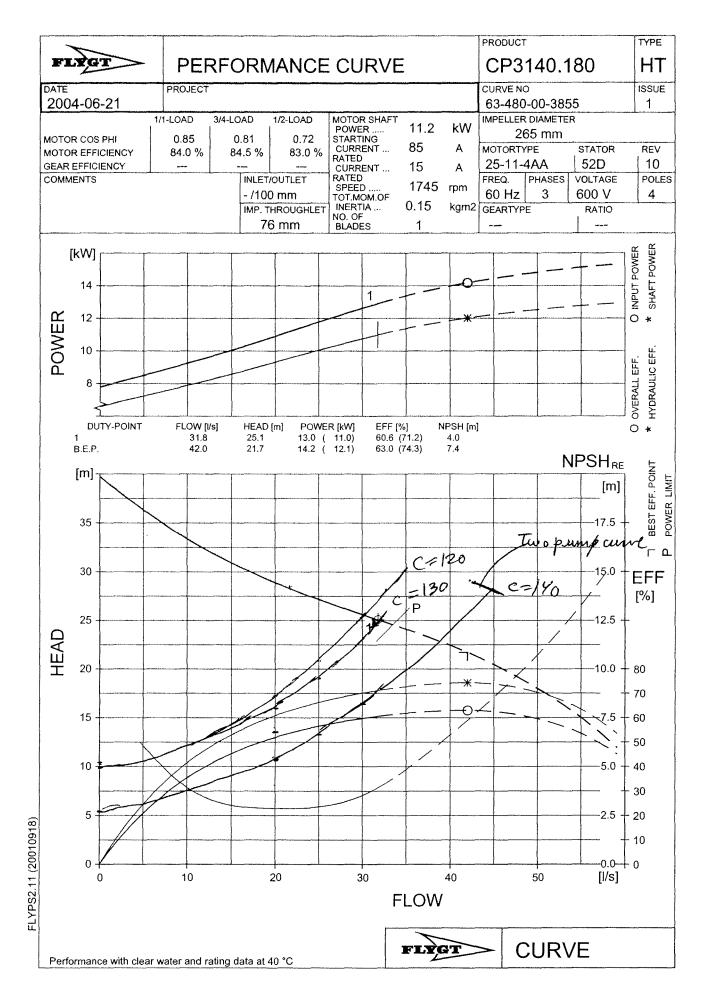
10.1425-542

With Market

AND DESCRIPTION

ACCURE.

States of the


Station of the

Service Services

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX VI

FLOW AND HEAD LOW CALCULATIONS FOR BAILEY STREET SEWAGE PUMPING STATION

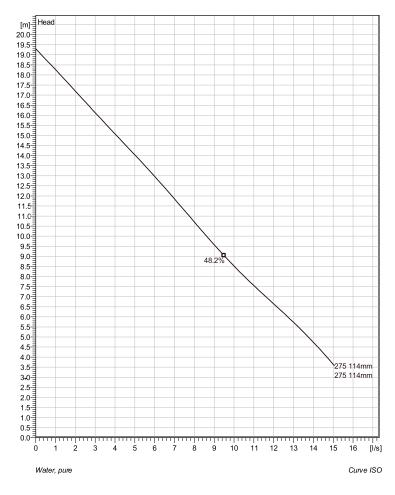
A Sugarable

and the second second

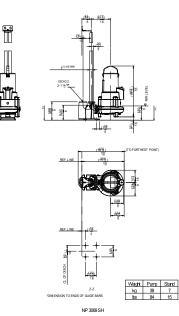
and street.

ALL STREET, ST

A number of the second



APPENDIX C


Specifications of the Proposed Pump

Technical specification

Installation: P - Semi permanent, Wet

FLYGT

Note: Picture might not correspond to the current configuration.

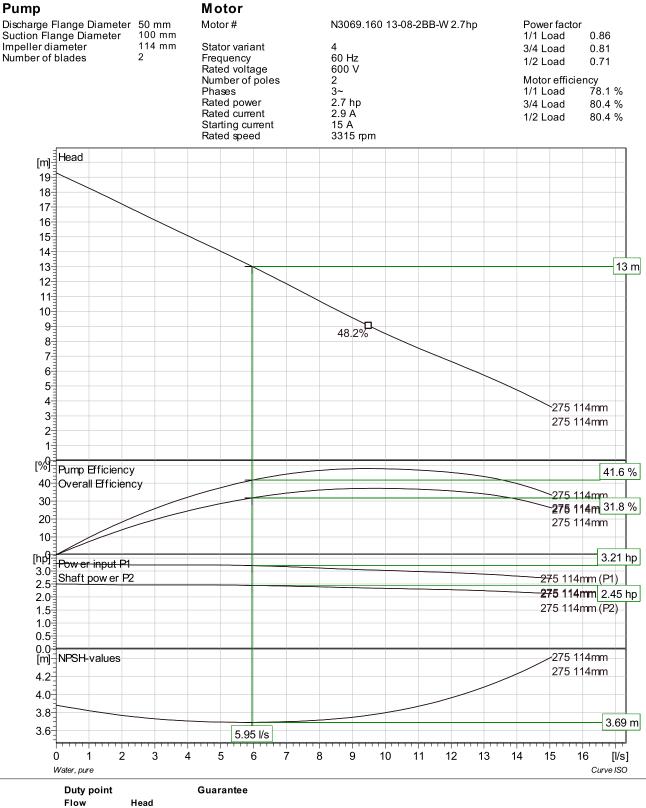
Motor

General Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Possible to be upgraded with Guide-pin® for even better clogging resistance. Modular based design with high adaptation grade.

Impeller

Impeller	
Impeller material	Grey cast iron
Discharge Flange Diameter	50 mm
Suction Flange Diameter	100 mm
Impeller diameter	114 mm
Number of blades	2

M OLOI	
Motor #	N3069.160 13-08-2BB-W 2.7hp Standard
Stator v ariant	4
Frequency	60 Hz
Rated voltage	600 V
Number of poles	2
Phases	3~
Rated power	2.7 hp
Rated current	2.9 A
Starting current	15 A
Rated speed	3315 rpm
Power factor	
1/1 Load	0.86
3/4 Load	0.81
1/2 Load	0.71
	0.71
Motor efficiency 1/1 Load	78.1 %
3/4 Load	80.4 %
1/2 Load	80.4 %
1/2 Load	80.4 %


Configuration

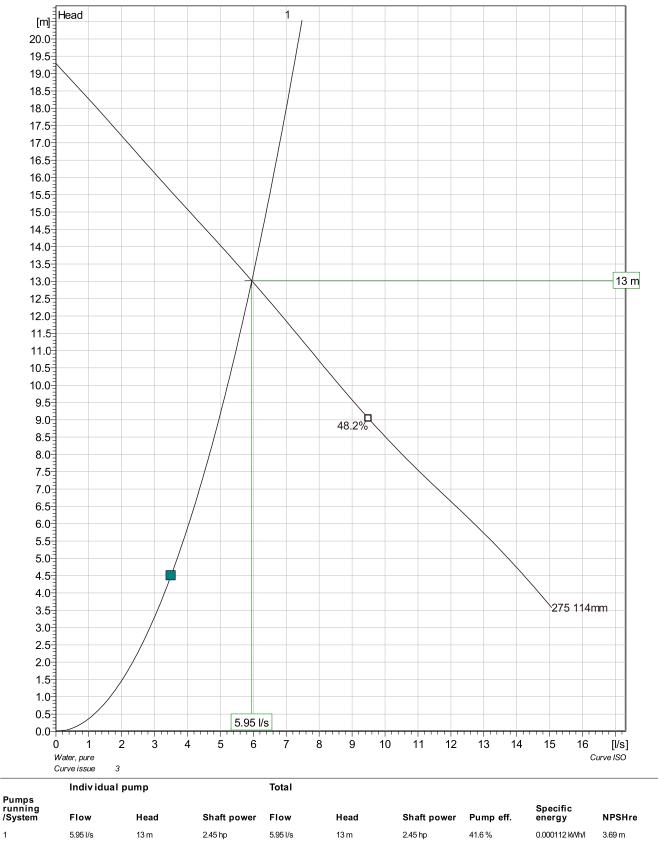
Project	Project ID	Created by	Created on	Last update
			1/25/2018	

Performance curve

Pump

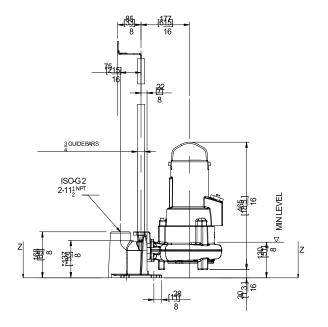
3.5 l/s 4.5 m

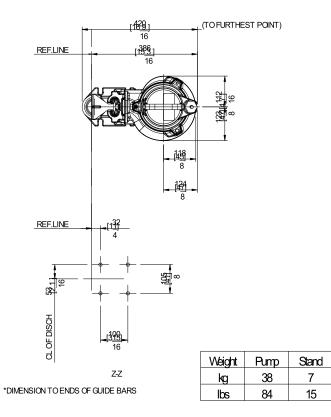
No


Project	Project ID	Created by	Created on	Last update
			1/25/2018	

Duty Analysis

1


FLYGT


Project	Project ID	Created by	Created on	Last update
			1/25/2018	

Dimensional drawing

NP3069SH

Project	Project ID	Created by	Created on	Last update
			1/25/2018	

MEMORANDUM

J.L. Richards & Associates Limited 700 - 1565 Carling Avenue Ottawa, ON Canada K1Z 8R1 Tel: 613 728 3571 Fax: 613 728 6012

Page 1 of 13

To: Mr. Dan Belleau Director of Public Works Township of North Dundas 636 St. Lawrence Street P.O. Box 489 Winchester, ON K0C 2K0

Date:	June 14, 2019
JLR No.:	28553-001
CC:	Sarah Gore – J.L. Richards & Associates Ltd.

- From: Nicolas Bialik, E.I.T. Ivan Dzeparoski, P.Eng. Mark Buchanan, P.Eng. Re: Township of North Dundas –Winchester Wastewater
- Capacity Assessment

OBJECTIVE

The purpose of this study is to assess the remaining wastewater capacity of the Main Street West Sewage Pumping Station (SPS), Bailey Street SPS and trunk gravity sewers in Winchester, Ontario. The findings of this assessment will allow the Township and the potential Developer to make an informed decision on the number of units, if any, that can be serviced as part of an initial development phase. Refer to Figure 1 of Attachment 'A' for an overview of Winchester's communal wastewater system. Specifically, this study includes the following:

- Summary of the existing wastewater treatment and collection system;
- Review of three years (2016-2018) of historical flow data to establish existing peak flow to the Main Street West SPS and Bailey Street SPS to estimate the remaining pumping capacity;
- Review of the existing Main Street West SPS and Bailey Street SPS pump data to verify that pump operation corresponds to the pumping station's rated capacity;
- Review of the existing 2012 hydraulic wastewater model and update of the model based on recent and expected system upgrades, which include:
 - o Increased pumping capacity at the Main Street West SPS;
 - o 12 unit apartment under construction along Main Street;
 - o Connection of one existing home on Main Street West, currently on private service; and
 - Connection of two businesses on Dawley Drive that have paid capital charge and are awaiting connection;
- Review of the remaining downstream theoretical sewer capacity based on the updated model;
- Comparison of rated pump capacity to simulated pumped peak flows in the model to recommend remaining wastewater capacity of the Main Street West SPS and Bailey Street SPS; and
- Final recommendation on the available wastewater capacity, if any to accommodate an initial phase of the proposed Wellings development.

Page 2 of 11

BACKGROUND

In 2012, the Township of North Dundas (Township) retained JLR to develop a hydraulic wastewater model of the Winchester communal wastewater collection system. At the time, the system serviced nearly 2,500 residents and consisted of approximately 20 kilometres of gravity sewers and forcemains, 250 maintenance holes, four SPSs (one main and three sub-area SPSs) and a wastewater treatment lagoon system. Around that time, a significant development known as Hyde Park was proposed on the west side of the Village and fronting along Main Street West. The development was to discharge to gravity sewers fronting the site and relied on downstream sewers and three pumping stations (Main Street West SPS, Bailey Street SPS and Ottawa Street SPS) to convey the wastewater flow to the treatment lagoons. A new developer, Wellings, recently obtained the property formerly known as Hyde Park. Based on discussions with the Township, the proposed development is to consist of townhouse units with a small portion of commercial development.

Beginning in 2017, JLR has been assisting the Township to undertake a Schedule 'B' Municipal Class Environmental Assessment (Class EA) for the Winchester Sewage Treatment System Upgrades. A notice of project completion was issued on April 29, 2019 and the final Phase 2 Report recently completed the mandatory 30-day review period. It is understood that the proposed future Wellings development was <u>not included</u> in the 20-year growth projections in this Class EA, as it was not made available to JLR at the time.

This current study excludes the assessment of the available capacity at the Ottawa Street SPS and wastewater treatment lagoon. It has been assumed that for both of these, sufficient capacity is available. Given that the Wellings Development was not accounted for during the Class EA, the Township would need to investigate allocating the remaining Ottawa Street SPS pumping capacity and lagoon treatment capacity to the initial phase of the proposed development in advance of the growth projections identified as part of the Class EA.

REVIEW OF THE EXISTING WASTEWATER COLLECTION SYSTEM

The wastewater infrastructure in the Town of Winchester, as shown in Figure 1, consists of the following:

- Winchester Sewage Treatment System (lagoons);
- Ottawa Street Sewage Pumping Station (SPS No. 1) Main SPS;
- St-Lawrence Street Sewage Pumping Station (SPS No. 2);
- Bailey Street Sewage Pumping Station (SPS No. 3);
- Main Street West Sewage Pumping Station (SPS No. 4);
- Over twenty (20) kilometres of gravity sewers and forcemains;
- Over 250 maintenance holes.

The Main Street West SPS was constructed in 2005 and consists of a 2.44 m diameter wet well (approximately 6.6 m below grade) with a 250 mm diameter inlet gravity sewer, 100 mm diameter forcemain and duplex submersible pumps that operate in duty/standby configuration. The forcemain outlets to an existing 200 mm diameter gravity sewer along Main Street that conveys wastewater flow to the Bailey Street SPS. In 2017, a capacity assessment of the pumping station was completed to evaluate additional peak flow generated by a proposed gas station and car wash development. Complete details are summarized in the memorandum Village of Winchester – Main Street West SPS Assessment (JLR, June 16, 2017). In 2019, the rated pumping capacity was increased from 3.5 to 6 L/s at 13 m of total dynamic head (TDH) in accordance with the Ministry of the Environment Conservation and Parks (MECP) Amended Environmental Compliance Approval (ECA) issued March 19, 2019. Refer to Attachment 'B' for a copy of this ECA. It is our understanding from correspondences with the Ontario Clean Water Agency (OCWA) that the increased pumping capacity was triggered by construction of a new gas station and car wash located along Highway No. 31 that drains to the Main Street West SPS. Refer to Attachment 'C' for a copy of OCWA Technical Memorandum 18-002 (OCWA, June 2018).

Originally constructed in 1971, the Bailey Street SPS consists of a 2.1 by 2.1 m wet well (approximately 7.1 m below grade) with a 200 mm diameter gravity inlet sewer, 150 mm diameter forcemain and duplex submersible pumps that operate in duty/standby configuration. The forcemain outlets to a 250 mm diameter gravity sewer at the intersection of

Page 3 of 11

Main Street and Louise Street that conveys flow toward the Ottawa Street SPS. In 2005, the pump impellers and discharge piping were replaced to increase the rated pumping capacity to 31.4 L/s at a TDH of 25 m. Refer to Attachment 'B' for a copy of the most recent amended ECA.

The current Ottawa Street SPS was constructed in 1988 and consists of a wet well/dry well configuration with a 600 mm diameter inlet gravity sewer, 350 mm diameter forcemain and three (3) sewage pumps each rated for 90 L/s that operate in duty/lag/standby configuration. The forcemain discharges to the stabilization lagoon with a rated treatment capacity of 2,200 m³/day in accordance with the MECP amended Certificate of Approval issued October 22, 2010. As noted previously, capacity assessments of the Ottawa Street SPS and the treatment lagoon system were not completed as part of this study.

A summary of the rated capacities of the Bailey Street SPS and Main Street West SPS are provided in Table 1.

Table 1: Summary of Bailey Street SPS and Main Street SPS

Pumping Station	ECA No.	Pump Operation ⁽¹⁾	TDH (m) ⁽¹⁾	Rated Capacity (L/s) ⁽¹⁾		
Bailey Street SPS	4037-6CAMCT (2005)	Two submersible pumps - duty/standby	25	31.4		
Main Street West SPS	9743-B9ALZN (2019)	Two submersible pumps - duty/standby	13	6 ⁽²⁾		
⁽¹⁾ According to the referenced ECAs.						
⁽²⁾ Rated capacity according to current ECA; OCWA staff advised that the proposed pump upgrades associated with the referenced ECA have not been installed at this time. The SPS is currently rated for 3.5 L/s.						

BAILEY STREET SPS & MAIN STREET WEST SPS - HISTORICAL REVIEW AND CAPACITY ASSESSMENT

HISTORICAL REVIEW (2016-2018)

For this review, OCWA provided three (3) years (2016-2018) of the following data:

- Daily volume of sewage received at the pump stations, in m³; and
- Daily run time of the pumps at the pump stations, in hours.

To calculate the peak daily flow for each SPS, the maximum daily flow over the three-year period was multiplied by a peaking factor of 1.4. This peaking factor was developed as part the Township of North Dundas, Village of Winchester Sanitary Sewer System Capacity Assessment Report (JLR, December 2012). The remaining wastewater capacity for each SPS was estimated based on the assumption that an upgrade would be required if the flows exceeded 90% of the theoretical SPS capacity based on each station's ECA. Data received from each SPS is summarized in Table 2.

Page 4 of 11

Sewage Pumping	TDH	Rated Capacity	Average Daily Flow		ndard iation	Peak Daily		Capacity at the Capacity (L/s)
Station	(m)	(L/s)	(L/s)		./s)	Flow (L/s)	100%	90%
Bailey Street SPS	25	31.4	2.62	+/-	1.16	14.75 ⁽²⁾	16.65	13.51
Main Street West SPS	13	6 (1)	0.32	+/-	0.23	5.25 ⁽³⁾	0.75	0.15

Table 2: Summary of Historical Data (2016-2018) from the Bailey Street SPS and Main Street West SPS

Notes:

⁽¹⁾ OCWA advised that the proposed pump upgrades associated with the referenced ECA have not been installed at this time. The SPS is currently rated for 3.5 L/s. However, for the purpose of this assessment, the upgraded capacity of 6 L/s was considered.

⁽²⁾ Maximum daily flow (MDF) of 10.54 L/s occurred on May 6, 2017. The next highest flow recorded at the Bailey Street SPS was 10.52 L/s on April 7, 2017. Peak daily flow (PDF) was estimated by multiplying MDF by a peaking factor of 1.4, developed as part of the Township of North Dundas, Village of Winchester Sanitary Sewer System Capacity Assessment Report (JLR, December 2012).
 ⁽³⁾ MDF of 3.75 L/s occurred on April 10, 2018. The next highest flow recorded at the Main Street West SPS was 2.12 L/s on April 16, 2018. PDF was estimated by multiplying MDF by a peaking factor of 1.4, similar to note 2.

Upon review of the Bailey Street SPS data, the following observations were made:

- Based on visual inspection of the data, no outliers were identified.
- The daily volume of sewage received in 2017 was on average ~ 55 m³ (0.63 L/s) and ~105 m³ (1.2 L/s) higher than
 the volume of sewage received in 2016 and 2018, respectively. This is reasonable given that, as OCWA noted,
 2017 was a very wet year, while 2018 was a very dry year. This shows that sewer inflow and infiltration (I&I) may
 affect the flow received at the Bailey Street SPS by as much as 20% or more, assuming 2016 is considered an
 average wet weather year.
- The pump run time during 2017 was on average 0.5 hours longer than in both 2016 and 2018. This is reasonable considering the increased flow to the SPS.
- Given the absence of data outliers and the comparable relationship between yearly flows and wet weather events, it is expected that there is approximately 13.5 L/s of remaining capacity at the Bailey Street SPS based on a review of the available historical flow data. It is worth noting that Table 2 is based on current data and does not account for current pump operation, new development and future connections included as part of the model update.

Upon review of the Main Street West SPS data, the following observations were made:

- Based on visual inspection of the data, several outliers were observed in the data, especially from November 2017 to August 2018, which has a significant effect on the overall assessment of the historical flows. Pump run times during this period were observed to be in some cases 0 hours and in others well above 24 hours. Furthermore, most of the peak inflows were observed in this period, which has been documented as having very dry weather. OCWA noted that a car wash/gas station was built within the last few years in the SPS catchment area, which may have induced this variability in the data.
- The daily volume of sewage received at the Main Street West SPS averaged 14.8 m³ (0.17 L/s), 30.9 m³ (0.36 L/s) and 36.0 m³ (0.42 L/s) from 2016 to 2018, respectively.
- Considering the variability in the flow data provided, it is anticipated that the upgraded Main Street SPS will be operating at or very near its rated capacity. We expect there is approximately 0.15 L/s of remaining capacity at the Main Street West SPS, based on the review of the available historical flow data and the

Page 5 of 11

implementation of the proposed pump upgrades. It is worth noting that Table 2 is based on current data and does not account for new development and future connections included as part of the model update.

PUMPING STATION RATED CAPACITY ASSESSMENT

This section provides a summary of three years of pump operation data from the Bailey Street SPS and Main Street West SPS, and compares this data to the ECA rated capacity of each SPS.

To determine the average pumped flow rate for each year at each pumping station, it was assumed that a direct correlation exists between the daily pump run time and the average effluent flow. Therefore, the daily pumped flow rate was calculated by dividing the daily volume of sewage received at the SPS by the daily run time of the SPS pumps. Table 3 summarizes the average daily pumped flow rates calculated for 2016, 2017 and 2018 for each SPS.

Table 3: Summary of Average Daily Pumped Flow Rates from 2016 to 2018

ECA Rated		Daily Pumped Flow Rate (L/s)				
SPS	Capacity (L/s)	2016	2017	2018		
Bailey Street (1)	31.4	26.42	26.35	19.52		
Main Street West ⁽²⁾	6 ⁽³⁾ (3.5 L/s)	1.06	1.25	1.29		
 ⁽¹⁾ The average pumped flow rate at the Bailey Street SPS from 2016 to 2018 was 24.08 +/- 4.21 L/s. ⁽²⁾ The average pumped flow rate at the Main Street West SPS from 2016 to 2018 was 1.20 +/- 0.36 L/s 						

⁽²⁾ The average pumped flow rate at the Main Street West SPS from 2016 to 2018 was 1.20 +/- 0

⁽³⁾ The Main Street West SPS currently operates at a capacity of 3.5 L/s.

Upon review of the available data, the following observations can be made:

- The Bailey Street SPS's average pumped flow rate appears to have declined by approximately 7 L/s from 2017 to 2018, which may suggest a change or degradation in pump operation.
- The Bailey Street SPS's current pumped flow rate is approximately 12 L/s (31 19 L/s) lower than the SPS rated capacity.
- The Main Street West SPS appears to operate lower than its current rated capacity of 3.5 L/s, as observed and documented in Technical Memorandum 18-002 (OCWA, June 2018) that recommended a pump upgrade at the SPS (refer to Attachment 'C').
- Based on current operation, the expected Bailey Street SPS remaining pump capacity is approximately 4.29 L/s (19.52 x 90% 14.75 L/s) using the estimated peak flow rate of 14.75 L/s summarized in Table 2. It is worth noting that Table 2 and Table 3 are based on current data and do not account for new development and future connections included as part of the model update.

Based on the available historical data, additional investigation at the Bailey Street SPS is warranted to assess the reduced pumping capacity in effort to restore the SPS closer to its rated capacity.

HYDRAULIC WASTEWATER MODEL

The hydraulic wastewater model (Model) was constructed in the SewerCAD® platform based on available as-constructed drawings and pumping information at the time. Modelling parameters were developed based on flow monitoring data gathered in the spring of 2012 to evaluate theoretical sewer conveyance capacities under existing and future development conditions. For complete details, refer to the Township of North Dundas, Village of Winchester Sanitary Sewer System Capacity Assessment Report (JLR, December 2012).

Page 6 of 11

WASTEWATER MODEL UPDATE

The existing model was updated to reflect changes to the wastewater system summarized as follows:

- Increased the rated pumping capacity at the Main Street West SPS from 3.5 to 6 L/s;
- Addition of a 12 unit apartment building currently under construction along Main Street West;
- Connection of one of existing home on Main Street West currently on private service; and
- Connection of two business on Dawley Drive that are awaiting connection to the wastewater system.

Assumptions and Modelling Criteria

The following assumptions and criteria were used to update model to represent current sanitary servicing conditions for the new residential and commercial users:

- Available capacity in the pipes has been assumed not to exceed 90% of the theoretical maximum rated capacity of existing wastewater infrastructure (i.e. pumping station and gravity sewer);
- Sanitary sewer loading allocated to the 12-unit apartment building, existing residential home and two businesses
 has been calculated using the best available information either provided by Township, MECP Sewer Guidelines,
 or the Township of North Dundas, Village of Winchester Sanitary Sewer System Capacity Assessment Report
 (JLR, December 2012);
- The proposed future development shall connect to the existing gravity sewers along Main Street West and outlet to the Main Street West SPS.

Table 4 below summarizes the sanitary peak flows updated in the model for the Main Street West collection area:

Land Use	Population / Units ⁽¹⁾	Average Flow ⁽²⁾	Peaking Factor ⁽³⁾	Peak Flow	
Residential – 12 unit Apartment Building	21.6	350 L/cap/day	4.0	0.350 L/s	
Residential – 1 Existing Single Family House	3.4	350 L/cap/day	4.0	0.055 L/s	
Commercial – Two Businesses	2.38	1,600 L	1.4	0.062 L/s	
Total Peak Flow (L/s): 0.467 L/s					

Table 4: Peak Flow from recent Developments discharging into Main Street West Sanitary Sewer

1. Based on 1.8 person/unit for the apartment unit and 3.4 person unit for single homes; 2.38 units accounted for the business development;

2. Residential and commercial flows based on the domestic sewage flows presented in MECP design guidelines and connection rates provided by the Township, that we understand is based on the Ontario Building Code (OBC), respectively;

3. Residential and Commercial Peaking factors per the MECP design guidelines and Township of North Dundas, Village of Winchester Sanitary Sewer System Capacity Assessment Report (JLR, December 2012), respectively.

The updated model was used to assess the remaining theoretical trunk sewer capacity and review pump operations at the Main Street West SPS and Bailey Street SPS.

Simulation Results and Sewer Capacity Assessment

Page 7 of 11

The hydraulic analysis of the wastewater collection system has been carried out as a steady state analysis where the flow and depth in the pipes were considered to be constant. The peak flow rates presented in Table 4 were added in the model at the following maintenance hole (MH) locations along the Main Street West sewage system:

- 1) MH 431 Collects peak flow from the apartment building;
- 2) MH 433 Collects peak flow from the existing single family home; and
- 3) MH 459 Collects peak flow from the two businesses.

The conveyance capacity of the pipe network has been assessed at the locations downstream of the aforementioned receiving MHs and also in the receiving trunk sewer system downstream of the Main Street West SPS and Bailey Street SPS. Model results are summarized on Figures 2 and 3 in Attachment 'A'.

Table 5 below provides a summary of the pipe network theoretical conveyance capacity along Main Street West downstream of the aforementioned receiving MHs while Table 6 provides summary of the pipe analyses downstream of both Sewage Pumping Stations.

Pipe Reach (MH to MH)	Location ⁽¹⁾	Pipe Diameter (mm)	Full Pipe Capacity (L/s)	Simulated Peak Flow (L/s)	Simulated Available Pipe Capacity (Excess Full Flow) (L/s)	90% of Theoretical Full Flow Capacity ⁽²⁾ (L/s)				
Main Street West										
431 - 432	East of MSWSPS	200	22.80	0.70	22.11	19.82				
432 - 433	East of MSWSPS	200	20.73	1.36	19.37	17.30				
433 - 434	East of MSWSPS	200	20.61	1.87	18.74	16.68				
Dawley Drive										
459 - 450	West of MSWSPS	250	32.07	1.23	30.84	27.63				
450 - 445	West of MSWSPS	250	31.92	1.67	30.24	27.06				
445 - 438	West of MSWSPS	250	31.46	1.67	29.79	26.64				
Main Street West										
438 - 437	West of MSWSPS	250	28.32	4.82	23.50	20.67				
437 - 436	West of MSWSPS	250	30.14	5.17	24.97	21.96				
436 - 434	West of MSWSPS	250	26.25	5.49	20.76	18.14				
Inflow in the Main Street West SPS										
434 - 435	MSWSPS	250	38.90	7.36	31.54	27.65				
435 – W4	MSWSPS	250	37.61	7.36	30.25	26.49				
(1) MSWSPS -	Main Street We	est SPS								

Table 5: Theoretical Conveyance Capacity Simulation Results – Downstream of MHs 431, 433 and 459

⁽²⁾ Available pipe flow capacity has been calculated using the 90% of the theoretical full pipe capacity minus the simulated peak flow.

The simulation results indicate that the 90% theoretical full flow capacity ranges from approximately 27 to 16 L/s for the receiving wastewater collection system tributary to the Main Street West SPS. Based on the model results, the gravity sanitary sewers are not the limiting constraint since their remaining residual capacity is expected to exceed the Main

Page 8 of 11

Street West SPS design capacity of 12.3 L/s as summarized in the Township of North Dundas Winchester Sewage System Expansion and Pump Station Modification, Pump Station Design Brief (Stantec, March 2005).

Pipe Reach	Pipe Diameter (mm)	Full Pipe Capacity (L/s)	Simulated Peak Flow in the Pipe (L/s)	Simulated Available Pipe Capacity (Excess Full Flow) (L/s)	90% of Theoretical Full Flow Capacity ⁽¹⁾ (L/s)
	Sanitar	y Sewers do	wnstream of Main Street	West SPS along Main Street V	Vest
40-39	200	21.95	6.30	15.64	13.46
39-38	200	21.00	6.53	14.48	12.37
38-37	200	26.34	6.99	19.35	16.72
37-41	200	20.18	13.46	6.72	4.70
			Inflow in the Bailey	Street SPS	
41-W3	300	236.87	18.3	218.57	194.88
		Sanitary Se	ewers downstream of Ba	iley Street SPS Forcemain	
Main Street V	Vest				
28-27	250	35.80	29.02	6.78	3.20
27-26	250	39.32	29.39	9.93	6.00
26-25	250	98.71	29.69	69.02	59.15
25-24	250	141.51	29.94	111.57	97.42
24-132	600	267.78	73.17	194.61	167.83
132-429	600	141.63	73.25	68.38	54.22
Ottawa Stree	t				
429-135	600	372.71	74.75	297.96	260.69
135-134	600	294.99	74.95	220.04	190.54
134-139	600	290.20	76.34	213.86	184.84
139-140	600	292.07	76.39	215.68	186.47
140-160	600	204.77	78.20	126.57	106.09
160-903	600	234.46	78.89	155.58	132.12
			Inflow in the Ottawa	Street SPS	
903-W1	600	614.01	78.89	535.12	473.72

Table 6: Theoretical Conveyance Capacity Simulation ResultsDownstream of Main Street West SPS and Bailey Street SPS

Review of the simulation, we have identified three sewer sections that have limited residual capacity summarized as follows (refer to Figures 2 and 3):

- MH 27-41 at 4.7 L/s residual capacity located near the Bailey Street SPS
- MH 28-27 at 3.2 L/s located immediately downstream of the Bailey Street forcemain
- MH 27-26 at 6.0 L/s located immediately downstream of the Bailey Street forcemain

The simulated pumped flow from the Bailey Street SPS is approximately 29 L/s, which remains comparable the ECA rated capacity of 31.4 L/s. Therefore, sewer sections from MH 28 to 27 and 27 to 26, located immediately downstream of the Bailey Street SPS, are not expect to be limiting sewer constraints until upgrades are proposed at the Bailey Street SPS or direct connection of future develop to these sewer sections.

It is anticipate that the sewer section from MH 27 to 41 is the limiting downstream sewer constraint, which can reasonably accommodate an additional 4.7 L/s of peak flow.

Page 9 of 11

MODELLED PUMP CAPACITY COMPARISON

In addition to assessing the pump performance based on available historical data, the simulated pump results were compared to the ECA rated capacity. As previously discussed, the capacity of the Main Street West SPS was recently increased from 3.5 to 6 L/s, however, the proposed pump upgrade has not been implemented at this time. OCWA provided the pump curve for the proposed upgrade, which was input and simulated in the model.

The following table provides a comparison between the SPS rated capacities presented in the ECA documents and the simulated model results:

Sowago	ECA Pumping Station Information				Model Results		
Sewage Pumping Station	ECA	Pump Operation	TDH (m)	Rated Capacity (L/s)	Pump Type	TDH (m)	Pump Outflow (L/s)
Bailey Street	4037- 6CAMCT	Two submersible pumps – duty/standby	25	31.4	FLYGT CP3140.180 HT	20.64	28.88
Main Street	9743-	Two submersible	13 6.0 -		FLYGT NP3069.060 SH	11.58	8.6
West	B9ALZN	pumps – duty/standby			Theoretical Pump	7.5	6.0

Table 7: ECA and Simulated Model Result Comparison for Bailey Street SPS and Main Street West SPS

Simulation results for the Bailey Street SPS remain comparable to the rated capacity listed in the ECA document and consistent with the Township of North Dundas, Village of Winchester Sanitary Sewer System Capacity Assessment Report (JLR, December 2012).

Initial simulation of the proposed pump upgrade at the Main Street West SPS appears to indicate that the pump will slightly exceeded the ECA rated capacity by 2.6 L/s and may warrant additional investigation, system modification prior to implementation or an amended ECA. The increased pumping rate is attributed to a lower system TDH requirement than available from the selected pump curve. Therefore, this wastewater assessment was completed based on a theoretical pump curve that matched the ECA rated capacity of 6 L/s.

An opportunity may exist to request an amended ECA for the Main Street SPS to increase the rated pump capacity to match the selected pump with the systems TDH requirement.

REMAINING SPS CAPACITY ASSESSMENT

This section provides an assessment of the remaining SPS capacity based on the expected peak flow received at the Bailey Street SPS and Main Street West SPS wet wells and 90% of their current operating capacity. Current operation of the Main Street SPS has been assessed based on the upgraded ECA rated capacity. Table 8 below summarizes and compares the expected peak flow to the wet wells based on the available historical data, simulated peak flow from the updated model and theoretical peak flow. The theoretical peak flow has been estimated based on the historical data and the addition of the theoretical peak flows calculated for the new development/sewer connections (refer to Table 4):

Page 10 of 11

Sewage	Peak Inflow into Sewage Pumping Station (L/s)			ECA Rated	90% of Current	Remaining SPS	
Pumping Station	Historical Data	Simulated Peak Flow	Theoretical Peak Flow	Capacity (L/s)	Operating Capacity	Capacity (L/s)	
Bailey Street SPS	14.75	18.30	15.22	31.4	17.57	2.35	
Main Street West SPS	5.25	7.36	5.72	6.0	5.40	0	

Table 8: Total Inflow into the Bailey Street SPS and Main Street West SPS

The simulated peak flow contained in the updated model appear to represent a conservative value when compared to the estimated peak flow developed from available historical data. Therefore, a theoretical peak flow was assessed at each SPS based on the historical data and the addition of the theoretical peak flows calculated for the new development/sewer connections.

Based on the forgoing assessment the Main Street West SPS is at or nearing its upgraded rated capacity with no readily available capacity to accommodate additional wastewater flow. Upgrades are likely warranted to accommodate additional wastewater flow, up to the Main Street West SPS ultimate design capacity of 12.3 L/s as summarized in the Township of North Dundas Winchester Sewage System Expansion and Pump Station Modification, Pump Station Design Brief (Stantec, March 2005).

The Bailey Street SPS appears to nearing its current operating capacity; however, additional investigation appears warranted to assess the reduced pumping capacity in effort to restore the SPS closer to its rated capacity.

CONCLUSION & RECOMMENDATIONS

Based on the foregoing wastewater assessment we have concluded the following:

- The Main Street West SPS is at or nearing its upgraded ECA rated capacity of 6 L/s with no readily available capacity to accommodate additional wastewater flow.
- The Bailey Street SPS appears to nearing 90% of its current operating capacity of 17.5 L/s based on the estimated theoretical peak flow of approximately 15.2 L/s. This operating capacity is less than its ECA rated capacity of 31.4 L/s.
- The sanitary sewers tributary to the Main Street West SPS are expected to have sufficient residual capacity to accommodate future development up to the Main Street West SPS ultimate design capacity of 12 L/s.
- The sanitary sewer section from MH 37 to 41 is the limiting downstream sewer constraint, which can reasonably accommodate an additional 4.7 L/s of peak flow.

For the Township's consideration, we offer the following recommendations:

- Simulation results of the proposed pump upgrade at the Main Street West SPS appears to indicate that the pump will slightly exceeded the ECA rated capacity (i.e., 6 L/s) by 2.6 L/s and may warrant additional investigation, system modification prior to implementation or an amended ECA;
- An opportunity may exist to request an amended ECA for the Main Street West SPS to increase the rated pump capacity to match the selected pump with the systems TDH requirement.
- Additional investigation at the Bailey Street SPS is warranted to assess the reduced pumping capacity in an effort to restore the SPS closer to its rated capacity of 31.4 L/s.
- Review available sewer capacity as part of any sewage pumping station upgrade.
- Review and confirm downstream sewer capacities prior to implementing SPS upgrades.
- Conduct a field survey to confirm the modelled truck sewer inverts and slopes, prior to undertaking potential sewer upgrades.

June 14, 2019 JLR No.: 28553-001

Page 11 of 11

Should you have any questions, please do not hesitate to contact the undersigned.

J.L. RICHARDS & ASSOCIATES LIMITED

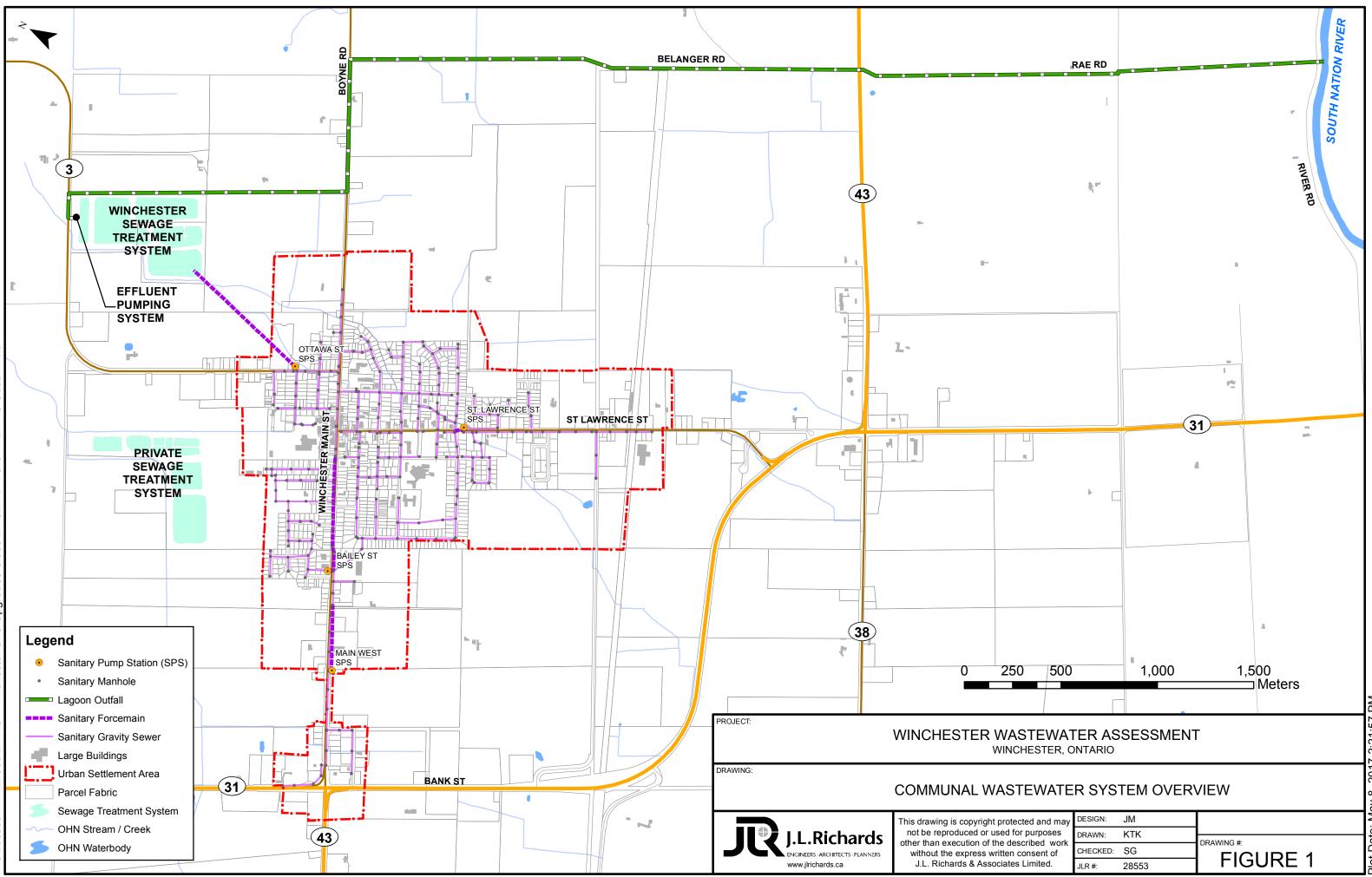
Prepared by:

Nicolas Bialik, E.I.T. Environmental Engineering Intern

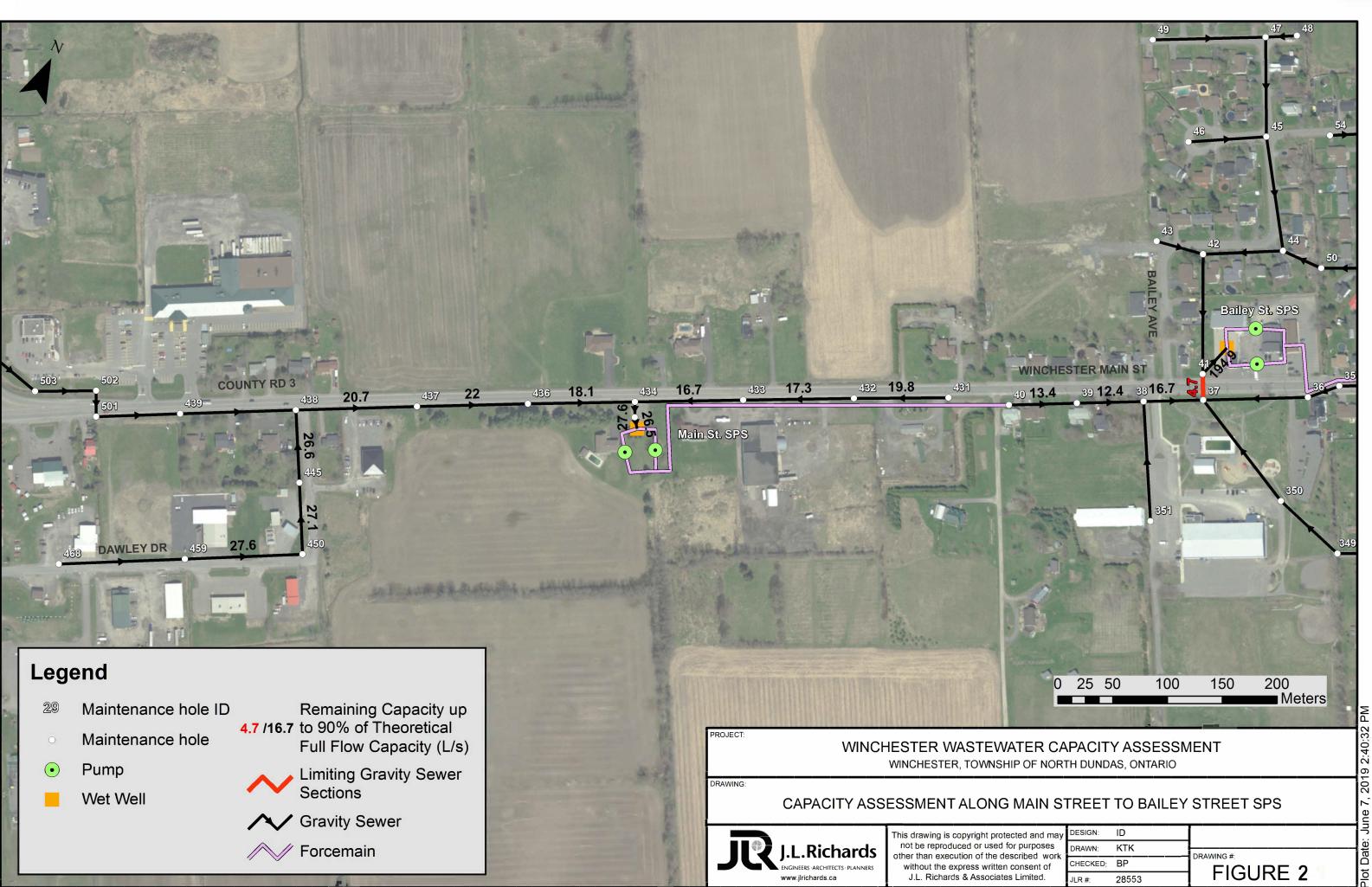
Reviewed by:

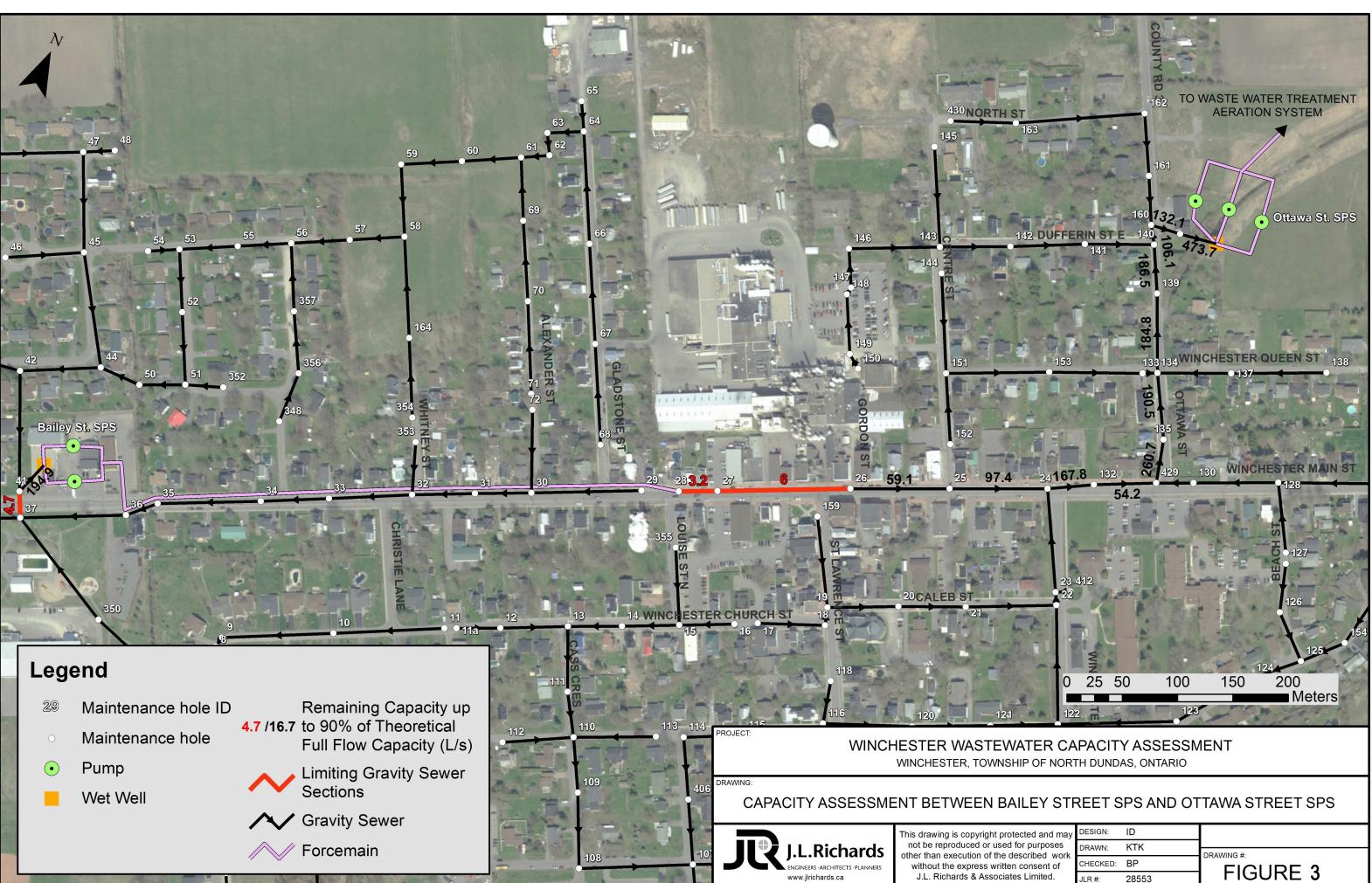
Mark Buchanan, P.Eng. Associate, Senior Civil Engineer

NB/ID/MB:mb


Prepared by:

2eparoski


Ivan Dzeparoski. P.Eng. Water Resources Engineer


Attachment 'A'

FIGURES

20 ά May lot Date:

ected and may	DESIGN: ID		
for purposes escribed work	DRAWN:	KTK	DRAWING #:
consent of	CHECKED:	BP	FIGURE 3
es Limited.	JLR #:	28553	FIGURE 3

Attachment 'B'

MECP ENVIRONMENTAL COMPLIANCE APPROVALS

Bailey Street SPS Main Street West SPS

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 9743-B9ALZN Issue Date: March 19, 2019

The Corporation of the Township of North Dundas 636 St. Lawrence Street Winchester, Ontario K0C 2K0

Site Location: Winchester Sewage Pumping Station No. 4 South Side of Main Street North Dundas Township, United Counties of Stormont, Dundas and Glengarry

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

alteration, usage and operation of existing municipal sewage works, for the transmission of sanitary sewage via pumping station ultimately discharging to the Winchester Lagoons for treatment and disposal as follows:

Classification of Collection System: Separate Sewer System

Proposed Works:

Sanitary Sewage Pumping Stations

Sewage Pumping Station No. 4

- replacement of both pumps to raise each pump rating to 6 litres per second at a Total Dynamic Head (TDH) of 13 metres;
- located on south site of Main Street, approximately 500 metres east of County Road No.31, consisting of a 2.44 metres diameter wet well equipped with two (2) submersible pumps, one for duty and another for standby, discharging to the forcemain described below;

Existing Works:

Sanitary Sewage Pumping Stations

Sewage Pumping Station No. 3

• located at the corner of Bailey Street and Main Street consisting of two (2) submersible pumps, one for duty and another for standby. The pumping station has a rated capacity of 31.4 litres per second at a total dynamic head of 25 metres;

Sanitary Forcemain

• a 100 mm diameter *sanitary forcemain* from sewage pumping station No.4 located on Main Street, discharging to an existing sanitary manhole on Main Street in the Township of North Dundas, United Counties of Stormont, Dundas & Glengarry;

including all other mechanical system, electrical system, instrumentation and control system, standby power system, piping, pumps, valves and appurtenances essential for the proper, safe and reliable operation of the Works in accordance with this Approval, in the context of process performance and general principles of wastewater engineering only;

all in accordance with the submitted supporting documents listed in Schedule A.

For the purpose of this environmental compliance approval, the following definitions apply:

- 1. "Approval" means this environmental compliance approval and any schedules attached to it, and the application;
- 2. "BOD5" (also known as TBOD5) means five day biochemical oxygen demand measured in an unfiltered sample and includes carbonaceous and nitrogenous oxygen demands;
- 3. "Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;
- 4. "District Manager" means the District Manager of the appropriate local district office of the Ministry where the Works are geographically located;
- 5. "EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;
- 6. "Equivalent Equipment" means alternate piece(s) of equipment that meets the design requirements and performance specifications of the piece(s) of equipment to be substituted;
- 7. "Existing Works" means those portions of the Works included in the Approval that have been constructed previously;
- 8. "Limited Operational Flexibility" (LOF) means the conditions that the Owner shall follow in order to

undertake any modification that is pre-authorized as part of this Approval;

- 9. "Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;
- 10. "Normal Operating Condition" means the condition when a pumping station is operating within its design capacity;
- 11. "Operating Agency" means the Owner or the entity that is authorized by the Owner for the management, operation, maintenance, or alteration of the Works in accordance with this Approval;
- 12. "Owner" means The Corporation of the Township of North Dundas and its successors and assignees;
- 13. "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;
- 14. "Professional Engineer" means a person entitled to practice as a Professional Engineer in the Province of Ontario under a licence issued under the Professional Engineers Act;
- 15. "Proposed Works" means those portions of the Works included in the Approval that are under construction or to be constructed;
- 16. "Sanitary Sewers" means pipes that collect and convey wastewater from residential, commercial, institutional and industrial buildings, and some infiltration and inflow from extraneous sources such as groundwater and surface runoff through means other than stormwater catch basins;
- 17. "Separate Sewer Systems" means wastewater collection systems that comprised of Sanitary Sewers while runoff from precipitation and snowmelt are separately collected in Storm Sewers;
- 18. "Storm Sewers" means pipes that collect and convey runoff resulting from precipitation and snowmelt (including infiltration and inflow);
- 19. "Works" means the approved sewage works, and includes Proposed Works, Existing Works and modifications made under Limited Operational Flexibility.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

- 1. The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the terms and conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2. The Owner shall design, construct, operate and maintain the Works in accordance with the conditions of this Approval.
- 3. Where there is a conflict between a provision of any document referred to in this Approval and the conditions of this Approval, the conditions in this Approval shall take precedence.

2. CHANGE OF OWNER AND OPERATING AGENCY

- 1. The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within thirty (30) days of the change occurring:
 - a. change of address of Owner;
 - b. change of Owner, including address of new owner;
 - c. change of partners where the Owner is or at any time becomes a partnership, and a copy of the most recent declaration filed under the *Business Names Act, R.S.O. 1990, c. B.17*, as amended, shall be included in the notification;
 - d. change of name of the corporation where the Owner is or at any time becomes a corporation, and a copy of the most current information filed under the *Corporations Information Act*, *R.S.O. 1990, c. C.39*, as amended, shall be included in the notification.
- 2. The Owner shall notify the District Manager, in writing, of any of the following changes within thirty (30) days of the change occurring:
 - a. change of address of Operating Agency;
 - b. change of Operating Agency, including address of new Operating Agency.
- 3. In the event of any change in ownership of the Works, the Owner shall notify the succeeding owner in writing, of the existence of this Approval, and forward a copy of the notice to the

District Manager.

4. The Owner shall ensure that all communications made pursuant to this condition refer to the environmental compliance approval number.

3. CONSTRUCTION OF PROPOSED WORKS

- 1. All Proposed Works in this Approval shall be constructed and installed and must commence operation within five (5) years of issuance of this Approval, after which time the Approval ceases to apply in respect of any portions of the Works not in operation. In the event that the construction, installation and/or operation of any portion of the Proposed Works is anticipated to be delayed beyond the time period stipulated, the Owner shall submit to the Director an application to amend the Approval to extend this time period, at least six (6) months prior to the end of the period. The amendment application shall include the reason(s) for the delay and whether there is any design change(s).
- 2. Within thirty (30) days of commencement of construction, the Owner shall prepare and submit to the District Manager a schedule for the completion of construction and commissioning operation of the Proposed Works. The Owner shall notify the District Manager within thirty (30) days of the commissioning operation of any Proposed Works. Upon completion of construction of the Proposed Works, the Owner shall prepare and submit a statement to the District Manager, certified by a Professional Engineer, that the Proposed Works is constructed in accordance with this Approval.
- 3. Within one (1) year of completion of construction of the Proposed Works, a set of record drawings of the Works shall be prepared or updated. These drawings shall be kept up to date through revisions undertaken from time to time and a copy shall be readily accessible for reference at the Works.

4. OPERATION AND MAINTENANCE

- 1. The Owner shall ensure that, at all times, the Works and the related equipment and appurtenances used to achieve compliance with this Approval are properly operated and maintained. Proper operation and maintenance shall include effective performance, adequate funding, adequate staffing and training, including training in all procedures and other requirements of this Approval and the OWRA and regulations, adequate laboratory facilities, process controls and alarms and the use of process chemicals and other substances used in the Works.
- 2. The Owner shall update/maintain the operations manual for the Works within six (6) months of completion of construction of the Proposed Works, that includes, but not necessarily limited to, the following information:
 - a. operating procedures for the Works under Normal Operating Conditions;

- b. inspection programs, including frequency of inspection, for the Works and the methods or tests employed to detect when maintenance is necessary;
- c. repair and maintenance programs, including the frequency of repair and maintenance for the Works;
- d. procedures for the inspection and calibration of monitoring equipment;
- e. operating procedures for the Works to handle situations outside Normal Operating Conditions and emergency situations such as a structural, mechanical or electrical failure, or an unforeseen flow condition;
- f. a spill prevention and contingency plan, consisting of procedures and contingency plans, including notification to the District Manager, to reduce the risk of spills of pollutants and prevent, eliminate or ameliorate any adverse effects that result or may result from spills of pollutants;
- g. procedures for receiving, responding and recording public complaints, including recording any followup actions taken.
- 3. The Owner shall maintain the operations manual up-to-date and make the manual readily accessible for reference at the Works.

5. MONITORING AND RECORDING

- 1. The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following documents and all analysis shall be conducted by an accredited laboratory or as directed by the District Manager:
 - a. the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only), as amended;
 - b. the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater Version 2.0" (January 2016), PIBS 2724e02, as amended;
 - c. the publication "Standard Methods for the Examination of Water and Wastewater", as amended.

6. LIMITED OPERATIONAL FLEXIBILITY

- 1. The Owner may make pre-authorized modifications to the sewage pumping stations in Works in accordance with the document "Limited Operational Flexibility Protocol for Pre-Authorized Modifications to Municipal Sewage Works" Pumping Stations (Schedule B), as amended, subject to the following:
 - a. the scope and technical aspects of the modifications are in line with those delineated in

Schedule B and conform with the Ministry's publication "Design Guidelines for Sewage Works 2008", as amended, Ministry's regulations, policies, guidelines, and industry engineering standards;

- b. where the pre-authorized modification requires notification, a "Notice of Modifications to Sewage Works" (Schedule B), as amended shall be completed with declarations from a Professional Engineer and the Owner and retained on-site prior to the scheduled implementation date. All supporting information including technical memorandum, engineering plans and specifications, as applicable and appropriate to support the declarations that the modifications conform with LOF shall remain on-site for future inspection.
- 2. The following modifications are not pre-authorized under Limited Operational Flexibility:
 - a. Modifications that involve an increase in capacity of the pumping station;
 - b. Modifications that require changes to be made to the emergency response, spill prevention and contingency plan; or
 - c. Modifications that are required pursuant to an order issued by the Ministry.

7. REPORTING

- 1. The Owner shall, within fifteen (15) days of occurrence of a spill within the meaning of Part X of the EPA, submit a full written report of the occurrence to the District Manager describing the cause and discovery of the spill, clean-up and recovery measures taken, preventative measures to be taken and schedule of implementation, in addition to fulfilling the requirements under the EPA and O. Reg. 675/98 "Classification and Exemption of Spills and Reporting of Discharges".
- 2. The Owner shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to Ministry staff.

8. RECORD KEEPING

1. The Owner shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation, maintenance and monitoring activities required by this Approval.

Schedule A

- Application for Environmental Compliance Approval, dated July 24, 2018 and received on July 31, 2018, submitted by Ontario Clean Water Agency on behalf of The Corporation of the Township of North Dundas;
- 2. Technical Memorandum, Pump Upgrade at Winchester Sewage Pumping Station No. 4, dated July 20, 2018, prepared by Ontario Clean Water Agency;
- 3. Response to Information Request -MECP Ref# 4441-B37NNJ, Winchester Sewage Pumping Station No. 4, dated February 21, 2019, prepared by Ontario Clean Water Agency.

Schedule B

Limited Operational Flexibility

Protocol for Pre-Authorized Modifications to Municipal Sewage Works -Pumping Station

- 1. General
 - 1. Pre-authorized modifications are permitted only where Limited Operational Flexibility has already been granted in the Approval and only permitted to be made at the pumping stations in the Works, subject to the conditions of the Approval.
 - 2. Where there is a conflict between the types and scope of pre-authorized modifications listed in this document, and the Approval where Limited Operational Flexibility has been granted, the Approval shall take precedence.
 - 3. The Owner shall consult the District Manager on any proposed modifications that may fall within the scope and intention of the Limited Operational Flexibility but is not listed explicitly or included as an example in this document.
 - 4. The Owner shall ensure that any pre-authorized modifications will not:
 - a. adversely affect the hydraulic profile of the sanitary sewage system;
 - b. result in new Overflow locations, or any potential increase in frequency or quantity of Overflow.
- 2. Modifications that do not require pre-authorization:
 - 1. Sewage works that are exempt from Ministry approval requirements;
 - 2. Modifications to the electrical system, instrumentation and control system.
- 3. Pre-authorized modifications that do not require preparation of "Notice of Modification to Sewage Works"
 - 1. Normal or emergency maintenance activities, such as repairs, renovations, refurbishments and replacements with Equivalent Equipment, or other improvements to an existing approved piece of equipment of a treatment process do not require pre-authorization. Examples of these activities are:
 - a. Repairing a piece of equipment and putting it back into operation, including replacement of

minor components such as belts, gear boxes, seals, bearings;

- b. Repairing a piece of equipment by replacing a major component of the equipment such as motor, with the same make and model or another with the same or very close power rating but the capacity of the pump or blower will still be essentially the same as originally designed and approved;
- c. Replacing the entire piece of equipment with Equivalent Equipment.
- 2. Improvements to equipment efficiency or treatment do not require pre-authorization. Examples of these activities are:
 - a. Adding variable frequency drive to pumps;
 - b. Adding flow measurement or other control device.
- 4. Pre-Authorized Modifications that require preparation of "Notice of Modification to Sewage Works"
 - 1. Pumping Stations
 - a. Replacement, realignment of existing sewers including manholes, valves, gates, weirs and associated appurtenances provided that the modifications will not add new influent source(s) or result in an increase in flow from existing sources as originally approved.
 - b. Extension or partition of wetwell to increase retention time for emergency response and improve station maintenance and pump operation;
 - c. Replacement or installation of inlet screens to the wetwell;
 - d. Replacement or installation of flowmeters, construction of station bypass;
 - e. Replacement, reconfiguration or addition of pumps and modifications to pump suctions and discharge pipings provided that the modifications will not result in a reduction in the firm pumping capacity or discharge head or an increase in the peak pumping rate of the pumping station as originally designed;
 - f. Replacement, realignment of existing forcemain(s) including valves, gates, and associated appurtenances provided that the modifications will not reduce the flow capacity or increase the total dynamic head and transient in the forcemain.
 - 2. Chemical Systems in Pumping Stations
 - a. Replacement and relocation of chemical storage tanks for existing chemical systems only, provided that the tanks are sited with effective spill containment;

- b. Replacement of existing chemical dosing pumps provided that the modifications will not result in a reduction in the firm capacity that the dosing pumps are originally designed to handle.
- c. Use of an alternate chemical provided that it is a non-proprietary product and is a commonly used alternative to the chemical approved in the Works, provided that the existing chemical storage tanks, chemical dosing pumps, feed pipes and controls are also upgraded, as necessary.
- 3. Standby Power System
 - a. Replacement or installation of standby power system, including feed from alternate power grid, emergency power generator, fuel supply and storage systems, provided that the existing standby power generation capacity is not reduced.

This page contains an image of the form entitled "Notice of Modification to Sewage Works". A digital copy can be obtained from the District Manager.

Ontario	
RETAIN COPY OF COMPLETED FORM IMPLEMENTATION DATE.	I AS PART OF THE ECA ON-SITE PRIOR TO THE SCHEDULED
(Insert the ECA's owner, number and issuance dat	te and notice number, which should start with "01" and consecutive numbers thereafter) ance Date (mm/dd/y) Notice number (if applicable)
ECA Owner	Municipality
Description shall include:	
A detail description of the modifications and/or of type/model, material, process name, etc.) Confirmation that the anticipated environmental List of updated versions of, or amendments to, a submission of documentation is not required, but Part 3 – Declaration by Profess Ihereby declare that I have verified the scope and Has been designed or reviewed by a Profession Has been designed consistent with Ministry's D practices, and demonstrating ongoing complian Ihereby declare that to the best of my knowledge,	effects are negligible. all relevant technical documents that are affected by the modifications as applicable, i.e at the listing of updated documents is (design brief, drawings, emergency plan, etc.)
A detail description of the modifications and/or of type/model, material, process name, etc.) Confimation that the anticipated environmental List of updated versions of, or amendments to, a submission of documentation is not required, but Part 3 – Declaration by Profess Ihereby declare that I have verified the scope and Has been designed in accordance with the Limi Has been designed consistent with Ministry's D practices, and demonstrating ongoing complian Ihereby declare that to the best of my knowledge, Name (Print)	all relevant technical documents that are affected by the modifications as applicable, i.e. at the listing of updated documents is (design brief, drawings, emergency plan, etc.) ional Engineer I technical aspects of this modification and confirm that the design: hal Engineer who is licensed to practice in the Province of Ontario; ted Operational Flexibility as described in the ECA; lesign Guidelines, adhering to engineering standards, industry's best management ce with s.53 of the Ontario Water Resources Act; and other appropriate regulations, information and belief the information contained in this form is complete and accurate PEO License Number
 A detail description of the modifications and/or of type/model, material, process name, etc.) Confirmation that the anticipated environmental List of updated versions of, or amendments to, a submission of documentation is not required, but Part 3 – Declaration by Profession I hereby declare that I have verified the scope and Has been designed or reviewed by a Profession Has been designed consistent with Ministry's D practices, and demonstrating ongoing complian 	effects are negligible. all relevant technical documents that are affected by the modifications as applicable, i.e. at the listing of updated documents is (design brief, drawings, emergency plan, etc.) ional Engineer d technical aspects of this modification and confirm that the design: hal Engineer who is licensed to practice in the Province of Ontario, ted Operational Flexibility as described in the ECA: lesign Guidelines, adhering to engineering standards, industry's best management ice with s.53 of the Ontario Water Resources Act; and other appropriate regulations. information and belief the information contained in this form is complete and accurate
A detail description of the modifications and/or of type/model, material, process name, etc.) Confirmation that the anticipated environmental List of updated versions of, or amendments to, a submission of documentation is not required, bu Part 3 – Declaration by Profess I hereby declare that I have verified the scope and 1. Has been designed or reviewed by a Profession Has been designed consistent with Ministry's D practices, and demonstrating ongoing complian I hereby declare that to the best of my knowledge, Name (Print) Signature Part 4 – Declaration by Owner I hereby declare that: 1. I am authorized by the Owner to complete this D 3. This modifications to the swage works are prog 4. The Owner to the set of my knowledge, Answer (Part by declare that: 1. I am authorized by the Owner to complete this D 3. This modifications to the swage works are prog 4. The Owner to the set of my knowledge, 1. Thereby declare that to the best of my knowledge to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner to the swage works are prog 4. The Owner that fulfilled all applicable requireme hereby declare that to the best of my knowledge, bereby declare that to the best of my knowledge bereby declare that to the best of my knowledge bereby declare that to the best of my knowledge bereby decla	effects are negligible. all relevant technical documents that are affected by the modifications as applicable, i.e. at the listing of updated documents is (design brief, drawings, emergency plan, etc.) iconal Engineer A technical aspects of this modification and confirm that the design: hal Engineer who is licensed to practice in the Province of Ontario; ted Operational Flexibility as described in the ECA: lesign Guidelines, adhering to engineering standards, industry's best management ice with s.3 of the Ontario Water Resources Act; and other appropriate regulations, information and belief the information contained in this form is complete and accurate PEO License Number Date (mm/ddlyy) Declaration; posed in accordance with the Limited Operational Flexibility as described in the ECA.
A detail description of the modifications and/or of type/model, material, process name, etc.) Confirmation that the anticipated environmental List of updated versions of, or amendments to, a submission of documentation is not required, bu Part 3 – Declaration by Profess I hereby declare that I have verified the scope and . Has been designed or reviewed by a Profession Has been designed consistent with Ministry's D practices, and demonstrating ongoing complian I hereby declare that to the best of my knowledge, Name (Print) Signature Part 4 – Declaration by Owner I hereby declare that: 1 am authorized by the Owner to complete this D This modifications to the sevage works are prog 4. The Owner consents to the modification; and 3. This modifications to the sevage works are prog 4. The Owner thas fulfilled all applicable requirement	effects are negligible. all relevant technical documents that are affected by the modifications as applicable, i.e. at the listing of updated documents is (design brief, drawings, emergency plan, etc.) Figure 1 A technical aspects of this modification and confirm that the design: nal Engineer who is licensed to practice in the Province of Ontario; ited Operational Flexibility as described in the ECA: lesign Guidelines, adhering to engineering standards, industry's best management ice with s.53 of the Ontario Water Resources Act; and other appropriate regulations. information and belief the information contained in this form is complete and accurate PEO License Number Date (mm/dd/yy) Declaration; posed in accordance with the Limited Operational Flexibility as described in the ECA. information and belief the information contained in this form is complete and accurate

EAPB Form July 26, 2018

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 regarding general provisions is imposed to ensure that the Works are constructed and operated in the manner in which they were described and upon which approval was granted.
- 2. Condition 2 regarding change of Owner and Operating Agency is included to ensure that the Ministry records are kept accurate and current with respect to ownership and Operating Agency of the Works and to ensure that subsequent owners of the Works are made aware of the Approval and continue to operate the Works in compliance with it.
- 3. Condition 3 regarding construction of Proposed Works is included to ensure that the Works are constructed in accordance with the Approval and that record drawings of the Works "as constructed" are updated and maintained for future references.
- 4. Condition 4 regarding operation and maintenance is included to require that the Works be properly operated, maintained, funded, staffed and equipped such that the environment is protected and deterioration, loss, injury or damage to any person or property is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the Owner. Such a manual is an integral part of the operation of the Works. Its compilation and use should assist the Owner in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for Ministry staff when reviewing the Owner's operation of the Works.
- 5. Condition 5 regarding monitoring and recording is included to enable the Owner to evaluate and demonstrate the performance of the Works, on a continual basis, so that the Works are properly operated and maintained.
- 6. Condition 6 regarding Limited Operational Flexibility is included to ensure that the Works are constructed, maintained and operated in accordance with the Approval, and that any pre-approved modification will not negatively impact on the performance of the Works.
- 7. Condition 7 regarding reporting is included to provide a performance record for future references, to ensure that the Ministry is made aware of problems as they arise, and to provide a compliance record for this Approval.
- 8. Condition 8 regarding record keeping is included to require that all records are required for a sufficient time period to adequately evaluate the long-term operation and maintenance of the Works.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 4037-6CAMCT issued on May 16, 2005

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the

Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*		The Director appointed for the purposes of Fart II.1 of
Environmental Review Tribunal		the Environmental Protection Act
655 Bay Street, Suite 1500		Ministry of the Environment, Conservation and Parks
5	AND	135 St. Clair Avenue West, 1st Floor
Toronto, Ontario		Toronto, Ontario
M5G 1E5		M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

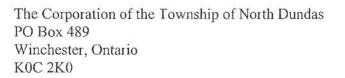
The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 19th day of March, 2019

H. Ahmed

Aziz Ahmed, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

The Diversion and since of feather and see a f Deat II 1 of


RU/

- c: Area Manager, MECP Cornwall
- c: District Manager, DWECD, MECP Ottawa James Su, Ontario Clean Water Agency

1.

Ministry Ministère of the de Environment l'Environnement AMENDED CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4037-6CAMCT

Site Location: Winchester Sewage Pumping Station South Side of Main Street North Dundas Township, United Counties of Stormont, Dundas & Glengarry, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

Sewage Pumping Station

- a sanitary sewage pumping station No.4 with an initial capacity of 3 5 L/s to be constructed on south site of Main Street, approximately 500 m east of County Road No 31, consisting of a 2 44 m diameter wet well equipped with two (2) submersible pumps, one for duty and another for standby, each pump rated at 3.5 L/s against a total dynamic head of 4 5 m, complete with control panel, ultrasonic transducer and back up float switches, air vents, access ladder, discharge piping, by-pass connection, valves and all other appurtenances necessary to have a complete and operable pumping station, discharging to the proposed forcemain;
- the existing *sanitary sewage pumping station No.3* at the corner of Bailey Street and Main Street to be modified by replacing the pump impellers and discharge piping of the existing two (2) submersible pumps (one for duty and another for standby) After the modification, the pumping station has a rated capacity of 31.4 L/s at a total dynamic head of 25 m;

Sanitary Forcemain

• a 100 mm diameter *sanitary forcemain* from sewage pumping station No.4 to be constructed on Main Street, discharging to an existing sanitary manhole on Main Street;

in the Township of North Dundas, United Counties of Stormont, Dundas & Glengarry;

all in accordance with the application dated March 10, 2005 and received on March 18, 2005, and all supporting documentation and information, including design brief, final plans and specifications prepared by Stantec Consulting Ltd.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- 1 "Act" means the Ontario Water Resources Act, R S.O. 1990, Chapter 0.40, as amended;
- 2 "*Certificate*" means this entire certificate of approval document, issued in accordance with Section 53 of the *Act*, and includes any schedules;
- 3. "Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Act;
- 4. "District Manager" means the District Manager of the Kingston District Office of the Ministry;
- 5. "Ministry" means the Ontario Ministry of the Environment;
- "Owner" means The Corporation of the Township of North Dundas and includes its successors and assignees;
- 7 "Regional Director" means the Regional Director of the Eastern Region of the Ministry;
- 8 "Substantial Completion" has the same meaning as "substantial performance" in the <u>Construction Lien</u> Act; and
- 9. "Works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below.

TERMS AND CONDITIONS

1 GENERAL PROVISIONS

- 1.1 The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Certificate and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 1 2 Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with the description given in this Certificate, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this Certificate
- 1 3 Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- 1.4 Where there is a conflict between the listed submitted documents, and the application, the application

shall take precedence unless it is clear that the purpose of the document was to amend the application

1.5 The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

2.1 The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

3. UPON THE SUBSTANTIAL COMPLETION OF THE WORKS

- 3.1 Upon the *Substantial Completion* of the *Works*, the Owner shall prepare a statement, certified by a Professional Engineer, that the works are constructed in accordance with this *Certificate*, and upon request, shall make the written statement available for inspection by Ministry personnel.
- 3.2 Within one year of the *Substantial Completion* of the *Works*, a set of as-built drawings showing the works "as constructed" shall be prepared. These drawings shall be kept up to date through revisions undertaken from time to time and a copy shall be retained at the *Works* for the operational life of the *Works*.

4 OPERATION AND MAINTENANCE

- 4.1 The Owner shall exercise due diligence in ensuring that, at all times, the Works and the related equipment and appurtenances used to achieve compliance with this Certificate are properly operated and maintained. Proper operation and maintenance shall include effective performance, adequate funding, adequate operator staffing and training, including training in all procedures and other requirements of this Certificate and the Act and regulations, adequate laboratory facilities, process controls and alarms and the use of process chemicals and other substances used in the Works.
- 4.2 The *Owner* shall prepare an operations manual within six (6) months of *Substantial Completion* of the *Works*, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the Works;
 - (b) inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the Works;
 - (d) procedures for the inspection and calibration of monitoring equipment;
 - (e) a spill prevention control and countermeasures plan, consisting of contingency plans and procedures for dealing with equipment breakdowns, potential spills and any other abnormal situations,

Page 3 - NUMBER 4037-6CAMCT

including notification of the District Manager; and

- (f) procedures for receiving, responding and recording public complaints, including recording any follow-up actions taken.
- 4.3 The Owner shall maintain the operations manual current and retain a copy at the location of the Works for the operational life of the Works Upon request, the Owner shall make the manual available to Ministry staff.

The reasons for the imposition of these terms and conditions are as follows.

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the *Owners* their responsibility to notify any person they authorized to carry out work pursuant to this *Certificate* the existence of this *Certificate*.
- 2 Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment
- 3. Condition 3 is included to ensure that the *Works* are constructed in accordance with the approval and that record drawings of the *Works* "as constructed" are maintained for future references
- 4. Condition 4 is included to require that the *Works* be properly operated, maintained, funded, staffed and equipped such that the environment is protected and deterioration, loss, injury or damage to any person or property is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the *Owner* and made available to the *Ministry* Such a manual is an integral part of the operation of the *Works*. Its compilation and use should assist the *Owner* in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for *Ministry* staff when reviewing the *Owner*'s operation of the *Works*

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 7036-4JWPUE issued on May 2, 2000

In accordance with Section 100 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0 40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state

- 1 The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2 The grounds on which you intend to rely at the hearing in relation to each portion appealed

The Notice should also include

- 3 The name of the appellant;
- 4 The address of the appellant;
- 5 The Certificate of Approval number;
- 6 The date of the Certificate of Approval;
- 7 The name of the Director;
- 8 The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon

The Secretary* Environmental Review Tribunal 2300 Yonge St, 12th Floor P O Box 2382 Toronto, Ontario M4P 1E4 The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Iribunal's requirements for an appeal can be obtained directly from the

AND

Iribunal at: Iel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act

DATED AT TORONTO this 16th day of May, 2005

A. Ahmed

Aziz Ahmed, P. Eng Director Section 53, Ontario Water Resources Act

NH/

c: District Manager, MOE Kingston District Office and Cornwall Area Office Jean Hebert, P Eng., Stantec Consulting Ltd.

Ministry Ministère of the de Environment l'Environnement CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 1985-6CAMAT

The Corporation of the Township of North Dundas PO Box 489 Winchester, Ontario K0C 2K0

Site Location: Main Street

North Dundas Township, United Counties of Stormont, Dundas and Glengarry, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of

- sanitary sewers to be constructed on County Road No.31 and Main Street (County Road No.43), in the Township of North Dundas, United Counties of Stormont, Dundas and Glengarry;

all in accordance with the application dated March 10, 2005 and received March 18, 2005, including final plans and specifications prepared by Stantec Consulting Ltd.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply

- (1) "*Certificate*" means this entire Certificate of Approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*, and includes any schedules;
- (2) "Owner" means The Corporation of the Township of North Dundas, and includes its successors and assignees; and
- (3) "*Works*" means the sewage works described in the *Owner*'s application, this *Certificate* and in the supporting documentation referred to herein, to the extent approved by this *Certificate*

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below

TERMS AND CONDITIONS

- 1 GENERAL CONDITIONS
- 1.1 The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

Page 1 - NUMBER 1985-6CAMAT

Es.

- 1.2 Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- 1.3 Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- 1.4 Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application
- 15 The requirements of this *Certificate* are severable If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

2.1 The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

The reasons for the imposition of these terms and conditions are as follows.

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the *Owners* their responsibility to notify any person they authorized to carry out work pursuant to this Certificate the existence of this *Certificate*.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R S O 1990, Chapter 0 40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R S O 1990, Chapter 0 40, provides that the Notice requiring the hearing shall state

1 The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and; 2 The grounds on which you intend to rely at the hearing in relation to each portion appealed

The Notice should also include

3 The name of the appellant;

67

- 4 The address of the appellant;
- 5 The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7 The name of the Director;
- 8 The municipality within which the works are located;

And the Notice should be signed and dated by the appellant

This Notice must be served upon

The Secretary*The DirectorEnvironmental Review IribunalSection 53, Ontario Water Resources Act2300 Yonge St , 12th FloorMinistry of the EnvironmentP O Box 2382AND2 St Clair Avenue West, Floor 12AToronto, OntarioToronto, OntarioM4P 1E4M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act

DATED AT IORONTO this 16th day of May, 2005

A. Ahmed

Aziz Ahmed, P Eng Director Section 53, Ontario Water Resources Act

NH/

c: District Manager, MOE Kingston District Office and Cornwall Area Office Jean Hebert, P.Eng., Stantec Consulting Ltd. Attachment 'C'

OCWA Technical Memorandum

Technical Memorandum

То:	Director, Client Services and Permissions Branch, MOECC
From:	Shawn Qu, P.Eng., Ontario Clean Water Agency (OCWA)
cc:	Stephane Barbarie (OCWA)
Date:	June 25, 2018
Project:	Pump Upgrade at Winchester Sewage Pumping Station No. 4
Subject:	Supporting Information for ECA Amendment Application (ECA # 4037-6CAMCT)

1 Project Background

The Winchester Sewage Pumping Station (SPS) No.4 was design by Stantec in 2005 and constructed in 2006 to meet the serviceability of the west portion of the community of Winchester in the Township of North Dundas. The SPS No. 4 was designed to accommodate a maximum flow rate of 12.3 L/s; however, as the initial development (Phase 1) only had a projected flow rate of 3.29 L/s, to avoid potential odour issues, two sewage pumps with a rated capacity of 3.5 L/s each were selected and installed in the wet well in 2006. The low pumping rate corresponded to a velocity of 0.38 m/s in the forcemain, which resulted in solids deposition in the forcemain.

With the gradual development in the service area of the SPS No.4, the sewage flow to the SPS has increased over the years, and the existing two pumps appear insufficient to handle the sewage coming into the wet well. As a result, the existing pumps will need to be upgraded to new larger pumps to accommodate the increased flow and alleviate solids deposition in the forcemain. The existing Environmental Compliance Approval (ECA) will need to be amended to reflect the information of the proposed pumps.

2 Existing System

The existing SPS No.4 is located on Main Street approximately 500 meters east of County Road 31, and consists of a 2.44 m diameter wet well and an aboveground building housing the control equipment. The wet well is equipped with two submersible sewage pumps (one duty and one standby), each rated at 3.5 L/s against a total dynamic head of 4.5 m. Raw sewage enters the wet well via a 250 mm sanitary sewer and then is pump to a downstream sanitary manhole via 348 meters of 100 mm diameter sanitary forcemain. The SPS No.4 is governed by an existing ECA (No. 4037-6CAMCT) issued on May 16, 2005. A copy of the ECA is attached in Appendix A.

The most recent flow information of the SPS No.4 between May 2017 and May 2018 is shown in the Table 1 below. The Peak Flows were calculated using the Average Daily Flows multiply by a peaking factor of 4. The Average Pumping Rate was calculated using the Total Monthly Flow divided by the pump run hours.

DATE	TOTAL MONTHLY FLOW (M ³)	AVERAGE DAILY FLOW (L/D)	PEAK FLOW (L/S)	AVERAGE PUMPING RATE (L/S)
May 2017	966.0	31163	1.44	1.32
June 2017	662.4	22079	1.02	1.01
July 2017	846.6	27309	1.26	1.12
August 2017	809.8	26122	1.21	1.58
September 2017	772.1	25739	1.19	1.70
October 2017	862.8	27,832	1.29	1.61
November2017	1282.1	42,737	1.98	1.38
December 2017	1678.2	54,135	2.51	0.69
January 2018	1016.1	32,778	1.52	1.30
February 2018	1117.9	39,925	1.85	1.68
March 2018	1403.0	45,257	2.10	1.61
April 2018	2095.4	69,847	3.23	1.34
May 2018	1191.4	38,432	1.78	1.23

Table 1: Flow Information of SPS No.4

As shown above, the existing pumps in the wet well were only able to pump at a maximum rate of 1.70 L/s during May 2017 to May 2018. The low pumping rates translated to low flow velocities in the forcemain and caused solids settling in the pipe, which in turn would increase the head loss and reduce pumping capacity. The pumps are probably de-rated due to their age (12 years), which also contributes to the low pumping rate.

Table 1 also shows that, most of the time, the peak flows coming into the SPS have exceeded the maximum pumping rate; therefore, pump upgrade is required at this SPS.

3 Proposed Work

As per existing Design Brief prepared by Stantec Consulting Ltd. dated March 2005 (see Appendix B), the wet well of the SPS No.4 has the capacity to manage a maximum flow of 12.3 L/s; however, due to the capacity limitation of the downstream sewage pumping station (SPS No.3) at the corner of Bailey Street and Main Street, the maximum flow that can be pumped from the SPS No.4 is restricted to 7.0 L/s.

To be conservative and not overwhelming downstream SPS No.3, a pumping rate of 6.0 L/s is proposed at the SPS No.4. As the maximum peak flow experienced at SPS No.4 was around 3.23 L/s (Table 1), this proposed pumping rate should be able to handle the existing peak flow and provide enough capacity for additional flows of future development. The pumping volumes and control level spacing are summarized in the Table 2 below.

Table 2: Pumping Volumes and Control Level Spacing

DESIGN PARAMETERS	VALUES
Design Flow Q (L/s)	6.0
Lag pump volume = $0.06 \times Q (m^3)$	0.36
Corresponding control level spacing (m)	0.077
Lead pump volume = $0.15 \times Q (m^3)$	0.90
Corresponding control level spacing (m)	0.19

The geodetic elevations for the control levels to meet the new pumping rate of 6.0 L/s are listed in Table 3.

REFERENCE	GEODETIC ELEVATION (M)
Incoming sewer invert	70.96
High level alarm	70.68
Start lag level	70.53
Start lead level	70.45
Stop all pumps level	70.26
Low level alarm	70.16
Bottom of we well	69.86

A system analysis was performed to size the sewage pumps for the proposed pumping rate. The analysis indicated that a pumping rate of 6.0 L/s corresponds to a total dynamic head of (TDH) of 7.5 m. TDH is calculated using the following parameters:

- Equivalent length of 75 mm and 100 mm diameter pipes, between pump and downstream manhole, are 30 m and 358 m respectively, including allowance for fittings.
- Friction factor and static head are for three conditions:
 - Low flow condition: C=120 and static head (at stop both pump level) = 73.50-70.26 = 3.24 m,
 - Average flow condition: C=130 and static head (at median pumping volume level) = 73.50 70.36 = 3.14 m, and
 - High flow condition: C= 140 and static head (at sewer invert) = 73.50-70.96 = 2.54 m.

Details of the TDH calculations are summarized in the Table 4 below.

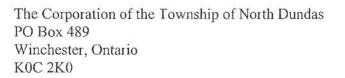
PARAMETER	VALUES			
Flow Conditions	Minimum Flow	Average Flow	Maximum Flow	
Friction C	120	130	140	
Q (L/s)	6.0	6.0	6.0	
Total Equivalent Length for 75 mm	30	30	30	

PARAMETER		VALUES	
SS Forcemain (m)			
Total Equivalent Length for 100 mm PVC Forcemain (m)	358	358	358
Safety Factor	1.10	1.10	1.10
Friction Loss (m)	4.23	3.65	3.18
Static Head (m)	3.24	3.1	2.54
Total Dynamic Head (TDH)	7.47	6.79	5.72
Velocity (m/s)	0.74	0.74	0.74

The flow velocity within the 100 mm diameter forcemain is calculated to be 0.74 m/s, meeting the minimum requirement of 0.6 m/s as per the MOECC Design Guidelines for Sewage Works (2008). Therefore the new pump would reduce solids deposition in the forcemain.

OCWA reached out to the pump supplier, Xylem Inc., with the above information to size the new pump. The most suitable submersible sewage pump, meeting the above requirements without changing the existing piping and controls, is the Flygt NP 3069 SH 3, which has a rated capacity of 5.95L/s and a TDH of 13 m. A copy of the pump specifications is attached in Appendix C. As the forcemain outlets to a sanitary sewer manhole, the additional head will be diminished in the manhole. Alternately, the additional head can be reduced or eliminated by chocking the valves in the discharging line.

This ECA amendment application only pertains to the pump upgrade, the remaining equipment and characteristics of the SPS No.4 stay the same as existing.


APPENDIX A

MOECC ECA (4037-6CAMCT)

1.

Ministry Ministère of the de Environment l'Environnement AMENDED CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4037-6CAMCT

Site Location: Winchester Sewage Pumping Station South Side of Main Street North Dundas Township, United Counties of Stormont, Dundas & Glengarry, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

Sewage Pumping Station

- a sanitary sewage pumping station No.4 with an initial capacity of 3 5 L/s to be constructed on south site of Main Street, approximately 500 m east of County Road No 31, consisting of a 2 44 m diameter wet well equipped with two (2) submersible pumps, one for duty and another for standby, each pump rated at 3.5 L/s against a total dynamic head of 4 5 m, complete with control panel, ultrasonic transducer and back up float switches, air vents, access ladder, discharge piping, by-pass connection, valves and all other appurtenances necessary to have a complete and operable pumping station, discharging to the proposed forcemain;
- the existing *sanitary sewage pumping station No.3* at the corner of Bailey Street and Main Street to be modified by replacing the pump impellers and discharge piping of the existing two (2) submersible pumps (one for duty and another for standby) After the modification, the pumping station has a rated capacity of 31.4 L/s at a total dynamic head of 25 m;

Sanitary Forcemain

• a 100 mm diameter *sanitary forcemain* from sewage pumping station No.4 to be constructed on Main Street, discharging to an existing sanitary manhole on Main Street;

in the Township of North Dundas, United Counties of Stormont, Dundas & Glengarry;

all in accordance with the application dated March 10, 2005 and received on March 18, 2005, and all supporting documentation and information, including design brief, final plans and specifications prepared by Stantec Consulting Ltd.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- 1 "Act" means the Ontario Water Resources Act, R S.O. 1990, Chapter 0.40, as amended;
- 2 "*Certificate*" means this entire certificate of approval document, issued in accordance with Section 53 of the *Act*, and includes any schedules;
- 3. "Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Act;
- 4. "District Manager" means the District Manager of the Kingston District Office of the Ministry;
- 5. "Ministry" means the Ontario Ministry of the Environment;
- "Owner" means The Corporation of the Township of North Dundas and includes its successors and assignees;
- 7 "Regional Director" means the Regional Director of the Eastern Region of the Ministry;
- 8 "Substantial Completion" has the same meaning as "substantial performance" in the <u>Construction Lien</u> Act; and
- 9. "Works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below.

TERMS AND CONDITIONS

1 GENERAL PROVISIONS

- 1.1 The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Certificate and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 1 2 Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with the description given in this Certificate, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this Certificate
- 1 3 Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- 1.4 Where there is a conflict between the listed submitted documents, and the application, the application

shall take precedence unless it is clear that the purpose of the document was to amend the application

1.5 The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

2.1 The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

3. UPON THE SUBSTANTIAL COMPLETION OF THE WORKS

- 3.1 Upon the *Substantial Completion* of the *Works*, the Owner shall prepare a statement, certified by a Professional Engineer, that the works are constructed in accordance with this *Certificate*, and upon request, shall make the written statement available for inspection by Ministry personnel.
- 3.2 Within one year of the *Substantial Completion* of the *Works*, a set of as-built drawings showing the works "as constructed" shall be prepared. These drawings shall be kept up to date through revisions undertaken from time to time and a copy shall be retained at the *Works* for the operational life of the *Works*.

4 OPERATION AND MAINTENANCE

- 4.1 The Owner shall exercise due diligence in ensuring that, at all times, the Works and the related equipment and appurtenances used to achieve compliance with this Certificate are properly operated and maintained. Proper operation and maintenance shall include effective performance, adequate funding, adequate operator staffing and training, including training in all procedures and other requirements of this Certificate and the Act and regulations, adequate laboratory facilities, process controls and alarms and the use of process chemicals and other substances used in the Works.
- 4.2 The *Owner* shall prepare an operations manual within six (6) months of *Substantial Completion* of the *Works*, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the Works;
 - (b) inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the Works;
 - (d) procedures for the inspection and calibration of monitoring equipment;
 - (e) a spill prevention control and countermeasures plan, consisting of contingency plans and procedures for dealing with equipment breakdowns, potential spills and any other abnormal situations,

Page 3 - NUMBER 4037-6CAMCT

including notification of the District Manager; and

- (f) procedures for receiving, responding and recording public complaints, including recording any follow-up actions taken.
- 4.3 The Owner shall maintain the operations manual current and retain a copy at the location of the Works for the operational life of the Works Upon request, the Owner shall make the manual available to Ministry staff.

The reasons for the imposition of these terms and conditions are as follows.

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the *Owners* their responsibility to notify any person they authorized to carry out work pursuant to this *Certificate* the existence of this *Certificate*.
- 2 Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment
- 3. Condition 3 is included to ensure that the *Works* are constructed in accordance with the approval and that record drawings of the *Works* "as constructed" are maintained for future references
- 4. Condition 4 is included to require that the *Works* be properly operated, maintained, funded, staffed and equipped such that the environment is protected and deterioration, loss, injury or damage to any person or property is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the *Owner* and made available to the *Ministry* Such a manual is an integral part of the operation of the *Works*. Its compilation and use should assist the *Owner* in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for *Ministry* staff when reviewing the *Owner*'s operation of the *Works*

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 7036-4JWPUE issued on May 2, 2000

In accordance with Section 100 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0 40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state

- 1 The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2 The grounds on which you intend to rely at the hearing in relation to each portion appealed

The Notice should also include

- 3 The name of the appellant;
- 4 The address of the appellant;
- 5 The Certificate of Approval number;
- 6 The date of the Certificate of Approval;
- 7 The name of the Director;
- 8 The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon

The Secretary* Environmental Review Tribunal 2300 Yonge St, 12th Floor P O Box 2382 Toronto, Ontario M4P 1E4 The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Iribunal's requirements for an appeal can be obtained directly from the

AND

Iribunal at: Iel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act

DATED AT TORONTO this 16th day of May, 2005

A.A.hmed

Aziz Ahmed, P. Eng Director Section 53, Ontario Water Resources Act

NH/

c: District Manager, MOE Kingston District Office and Cornwall Area Office Jean Hebert, P Eng., Stantec Consulting Ltd.

Ministry Ministère of the de Environment l'Environnement CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 1985-6CAMAT

The Corporation of the Township of North Dundas PO Box 489 Winchester, Ontario K0C 2K0

Site Location: Main Street

North Dundas Township, United Counties of Stormont, Dundas and Glengarry, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of

- sanitary sewers to be constructed on County Road No.31 and Main Street (County Road No.43), in the Township of North Dundas, United Counties of Stormont, Dundas and Glengarry;

all in accordance with the application dated March 10, 2005 and received March 18, 2005, including final plans and specifications prepared by Stantec Consulting Ltd.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply

- (1) "*Certificate*" means this entire Certificate of Approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*, and includes any schedules;
- (2) "Owner" means The Corporation of the Township of North Dundas, and includes its successors and assignees; and
- (3) "*Works*" means the sewage works described in the *Owner*'s application, this *Certificate* and in the supporting documentation referred to herein, to the extent approved by this *Certificate*

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below

TERMS AND CONDITIONS

- 1 GENERAL CONDITIONS
- 1.1 The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

Page 1 - NUMBER 1985-6CAMAT

Es.

- 1.2 Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- 1.3 Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- 1.4 Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application
- 15 The requirements of this *Certificate* are severable If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

2.1 The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

The reasons for the imposition of these terms and conditions are as follows.

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the *Owners* their responsibility to notify any person they authorized to carry out work pursuant to this Certificate the existence of this *Certificate*.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R S O 1990, Chapter 0 40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R S O 1990, Chapter 0 40, provides that the Notice requiring the hearing shall state

1 The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and; 2 The grounds on which you intend to rely at the hearing in relation to each portion appealed

The Notice should also include

3 The name of the appellant;

67

- 4 The address of the appellant;
- 5 The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7 The name of the Director;
- 8 The municipality within which the works are located;

And the Notice should be signed and dated by the appellant

This Notice must be served upon

The Secretary*The DirectorEnvironmental Review IribunalSection 53, Ontario Water Resources Act2300 Yonge St , 12th FloorMinistry of the EnvironmentP O Box 2382AND2 St Clair Avenue West, Floor 12AToronto, OntarioToronto, OntarioM4P 1E4M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act

DATED AT IORONTO this 16th day of May, 2005

A. Ahmed

Aziz Ahmed, P Eng Director Section 53, Ontario Water Resources Act

NH/

c: District Manager, MOE Kingston District Office and Cornwall Area Office Jean Hebert, P.Eng., Stantec Consulting Ltd.

APPENDIX B

Stantec Design Brief (March 2005)

19165

ACCENTRAL

STATES AND

WAR IS

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

PUMP STATION DESIGN BRIEF

Project Number: 1634-00533

Prepared by:

Stantec Consulting Ltd.

400-1505 Laperriere Avenue Ottawa, Ontario K1Z 7T1

Prepared for:

Township of North Dundas

636 St. Lawrence Street, P.O. Box. 489 Winchester, Ontario K0C 2K0

March, 2005

WERE WAR

Sold Sheet

Carlos and

No. Contraction

STATES OF

State of the

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

Table of Contents

1.0	INTRODUCTION	
1.1	PURPOSE OF APPLICATION	
	EXISTING SEWAGE COLLECTION, PUMPING AND TREATMENT SYSTEM1.1	
2.0	SEWAGE COLLECTION AND PUMPING SYSTEM	
2.1	SERVICED AREA AND DESIGN FLOW RATES	
2.2	GRAVITY SEWER	
2.3	SEWAGE PUMPING STATION NO. 4 WET WELL	•
2.4	SEWAGE PUMPING STATION NO. 4 PUMP SELECTION TO SERVICE INITIAL PHASE	
	OF DEVELOPMENT	,
2.5	MODIFICATIONS TO SEWAGE PUMPING STATION PUMP NO.3 AT BAILEY STREET2.5	;
2.6	WINCHESTER LAGOON RESIDUAL CAPACITY	ĺ
3.0	DRAWINGS	

LIST OF APPENDICES

Appendix I	Certificate of Approval	(Sewage) No.	7036-4JWPUE date	d May 3 rd , 2000
------------	-------------------------	--------------	------------------	------------------------------

- Appendix II Gravity Sewer Design flow rates
- Appendix III Flow and Head low Calculations for Sewage Pumping Station No.4 on Main Street
- Appendix IV Pump Curve at Sewage Pumping Station No. 4 on Main Street
- Appendix V Pump Curve at Bailey Street Sewage Pumping Station
- Appendix VI Flow and Head Low Calculations for Bailey Street Sewage Pumping Station

1.0 Introduction

1.1 PURPOSE OF APPLICATION

The purpose of this application is to amend the existing Certificate of Approval (Sewage) No. 7036-4JWPUE dated May 3rd, 2000 (refer to Appendix I), for the construction of a proposed sewage pumping station, forcemain, and modification of an existing sewage pumping station. These upgrades and/or modifications are required for serviceability of the west portion of the community of Winchester.

Although the civil works (i.e. inlet gravity sewer, wet well and forcemain) are designed to service the ultimate population within the drainage area, the mechanical works associated with this application (i.e. the sewage pumps) are to be selected to service a proposed commercial development located at the intersection of County Road 31 and Main Street and an existing commercial property located on the east side of County Road 31, approximately 250 meters north of the intersection.

On behalf of the Owner, The Corporation of the Township of North Dundas, the Ontario Clean Water Agency (OCWA) has been retained as the Operating Authority for the Sewage Collection and Treatment Facilities. As outlined in the Sanitary Servicing Assessment Report prepared by Stantec Consulting Ltd. on June 25, 2005, the treatment facilities can accommodate the additional flows associated with the additional population to be serviced by the new gravity sewer. An application for the proposed sanitary sewer has been submitted under a separate cover.

1.2 EXISTING SEWAGE COLLECTION, PUMPING AND TREATMENT SYSTEM

The Community of Winchester sewage collection and treatment system consists of the following:

- Approximately 5 km of gravity sewers, with diameters ranging between 200 and 300 mm diameter.
- A sewage pumping station located on St-Lawrence Street, servicing the south portion of Winchester; no sewage from the new sewage drainage area will be transferred to this station.
- Two (2) existing sewage pump stations, the first is located near the intersection of Main Street and Bailey Avenue (referred to as Pumping Station No.3) and the second near the intersection of Ottawa Street and Dufferin Street (referred to as Ottawa Street Pump Station). The rated capacity of Pumping Station No.3 is 24.39 L/s and based on the proposed flows will require some upgrade. Ottawa Street Pump Station has a rated capacity of 90L/s which is capable to proposed flows, considering a peak hour factor of 3.54.

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

10(10013vil

and the sea

Station of

中国的

and the second

T - F - F - F - F

• A waste stabilization pond, consisting of five cells, partial aeration, phosphorus removal facilities, and pumping facilities discharging to the Henderson Drain. Treated effluent eventually reaches the Castor River and the South Nation River. The Lagoon's rated capacity is 2,220 m³/d. Final Effluent is discharged during the Spring and Fall seasons.

2.0 Sewage Collection and Pumping System

2.1 SERVICED AREA AND DESIGN FLOW RATES

The area to be ultimately serviced by the new sewage pumping station will include the west portion of the Community of Winchester, Dawley Drive, the future development located west of Highway #31 and approximately 500 meters north of Main Street along County Road 31. This area consists into the following (refer to Figure 1):

- A commercial area, located at the corner of Highway #31 and Main Street, including the existing Dean's Food Store and the proposed Tim Hortons.
- An area located north of Main Street, along the east side of Highway #31, consisting of an existing motel and restaurant.
- A residential and commercial development along Dawley Drive and on Main Street from Highway #31 to the proposed pumping station.
- A new development located along the extension of Main Street, west of Highway #31.

For the initial phase of development, Tim Hortons, the motel and restaurant (Country Kitchen) will be serviced. The corresponding total peak hour flow is 3.29 L/s, as stated in Appendix II. For initial development pump selection, we consider a flow rate of 3.5 L/s, which is the minimum flow generated by a commercial quality submersible pump (ITT FLYGT). Smaller domestic use pumps developing lower flow rates are available, however would not be suitable for the intense service conditions associated with a municipal system.

The ultimate service sewage flow within this drainage area is established to be12.3 L/s at peak hour. The new sewage pumping station wet well is to be designed to accommodate that flow.

2.2 GRAVITY SEWER

Under a separate cover, an application for a Certificate of Approval has been submitted to the MOE for the installation of a sanitary sewer for the serviceability of the following areas:

- Approximately 555 meters of 250 mm diameter gravity sewer on Main Street, between County Road 31 and the proposed sewage pumping station;
- Approximately 300 meters of 200 mm diameter gravity sewer on Main Street, east of the proposed pumping station, toward Bailey Street;
- Approximately 248 meters of 200 mm diameter gravity sewer along Highway #31, north of Tim Hortons.

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

The detailed design calculations are included under Appendix II. As per the MOE Guidelines, minimal slope have been retained, in order to limit excavation depth near pumping station. Flow rate generated by the commercial area for the first years of development is 3.29 L/s.

2.3 SEWAGE PUMPING STATION NO. 4 WET WELL

The preferred location of the proposed sewage pumping station is the Winchester Well No.4 site, which is currently owned by the Municipality. This site is located on Main Street approximately 500 meters east of County Road 31. This well pump station is no longer in operation however the facility still exists. Three phase power supply and telemetry facilities available on site are to be re-used to service the new Winchester Sewage Pumping Station No.4.

The wet well design is based on the ultimate population flow, which is 12.3 L/s. Station diameter is to be 2.44 meters (8'). The station cross-sectional area is 4.67 m². The corresponding pumping volumes and control level spacing is as follow:

Design flow Q	12.3 L/s							
Lag pump volume								
= 0.06 X Q Control level spacing	0.74 m ³ 0.16 m							
Lead pump volume								
= 0.15 X Q (m ³) Control level spacing	1.84 m ³ 0.39 m							

The spacing between the incoming gravity sewer invert and the bottom of the wet well is established as follow:

- = 150 mm between incoming sewer invert and start lag pump level
 - + 160 mm between start lag and start lead pump levels
 - + 390 mm between start lead and stop pump levels
 - + 100 mm between stop all pump level and low level alarm float level
 - + 300 mm low level alarm float level and bottom of wet well (typical value for submersible pumps)
- = 1,100 mm between incoming sewer invert and bottom of wet well.

In order to meet the ultimate population requirements, the geodetic elevations of wet well are as follow:

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

<u>Reference</u>	Geodetic Elevation (m)
Top of wet well:	76.80
Finished ground level:	76.50
Intermediate platform:	73.80
Incoming sewer invert:	70.96
Bottom of wet well:	69.86

2.4 SEWAGE PUMPING STATION NO. 4 PUMP SELECTION TO SERVICE INITIAL PHASE OF DEVELOPMENT

The target design flow for pump selection is the fifteen-year design flow, i.e. 3.4 L/s. This flow is inferior to the ultimate pumping station capacity, but is sufficient to meet the proposed phase 1 needs (set at 3.29 L/s, as shown in Appendix II). A higher pump flow rate would have longer pump cycle duration, and would generate nauseous odors at the station and as such the shorter pump cycles associated with a smaller pump will avoid potential odor problems. For pumping volumes and control level spacing considerations, we rounded up the flow to 3.5 L/s, are the following:

Design flow Q	3.5 L/s
Lag pump volume = 0.06 X Q	0.21 m ³
Corresponding control level spacing	0.045 m
Lead pump volume = 0.15 X Q	0.52 m ³
Corresponding control level spacing	0.11 m

The geodetic elevations for the control levels, to meet the phase 1 design requirements, are as follow:

Reference	Geodetic Elevation (m)
Incoming sewer invert:	71.45
High level alarm float:	. 70.57
Start lag level:	70.42
Start lead level:	70.37
Stop all pumps level:	70.26
Low level alarm (stop all pumps):	70.16
Bottom of wet well:	69.86

A system analysis was performed to size the sewage pumps for this application. The system curve indicates that a flow of 3.4 L/s corresponds to a total dynamic head (TDH) of 4.50 m. The smallest available heavy duty ITT FLYGT submersible sewage pump (ie. model CP3045.180 HT with a 74 mm diameter impeller and 50 mm diameter discharge) is capable of handling the proposed flow rate.

Total dynamic head is calculated using the following design parameters (pump curve calculations are included under Appendix III):

- Equivalent length of 100 mm diameter pipe, between pump and gravity sewer manhole = 549 m, including allowance for fittings.
- Friction factor and static head are reviewed for three conditions
 - Low flow conditions: C = 120 and static head (at stop both pump level) = 73.50 - 70.26 m = 3.24 m,
 - Average flow conditions: C = 130 and static head (at median pumping volume level) = 73.50 - 70.31m = 3.19 m;
 - High flow conditions: C = 120 and static head (at sewer invert) = 73.50 71.45 m = 2.05 m. Pump motor is to be sized to meet this condition.

The flow velocity within the 100 mm diameter forcemain (0.38 m/s) is inferior to the self-cleaning velocity of 0.8 m/s. A forcemain bypass piping and valve assembly will be provided at the station, to facilitate forcemain-cleaning procedures in the first years of the development. Long-term flow rate will be sufficient to achieve the self-cleaning velocity.

The existing 60 A, 600v/3ph/60Hz electrical entrance will provide enough capacity to meet the new sewage pump starting load (12 A).

No standby power generator is to be installed at the station at this stage; instead, a manual transfer switch and an exterior wall mounted receptacle will be provided to connect a portable generator. Existing telemetry facilities will be programmed to send an alarm signal to the plant operator in case of a high level alarm and in case of loss of power. Volume provided within the wet well and the sewer, between the stop pump level and the lowest basement, is sufficient to provide two hours of retention volume.

The existing natural gas feed line along Main Street is servicing the pump building heater. The Municipality will install at a later date a natural gas powered generator outside the building, to meet the ultimate population sewer pump power requirements.

Characteristics of Sewage Pumping Station No. 4 pumps are the following:

- Cross-sectional area for a 2.44 m diameter wet well = 4.67 m²
- Pump model: ITT FLYGT CP3045.180 HT, with 2 HP 600v/3ph/60Hz motor and 74 mm diameter impeller.
- Pump performance, 3.4 L/s at a total dynamic head of 4.5 m.
- Control level device: Milltronics MultiRanger.

STATE A

WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

- Minimum water level for pump operation (according to ITT FLYGT) = 260 mm.
- Discharge piping and valves: 75 mm diameter elbows, riser, ball valve, and gate valve.
- Forcemain: 100 mm diameter, 343 m long, with 45° elbows
- Discharge at gravity sewer manhole: Geodetic Elevation = 73.50 m

Pump curve is shown in Appendix IV.

2.5 MODIFICATIONS TO SEWAGE PUMPING STATION PUMP NO.3 AT BAILEY STREET

The existing sewage pumping station at the corner of Bailey Street and Main Street (hereafter designated as Pumping Station No.3) was upgraded in 2000, in order to service the various developments within the station drainage area. Each of the two 15 HP (11.2 kW) sewage pumps can develop the peak hour design flow rate of 24.39 L/s. A 40 kW diesel generator has been installed in 2002 to service the station.

The new sewage pumping station at Winchester Well No. 4 site will discharge the fifteen-year design flow (i.e. 3.0 L/s) to the existing Pumping Station No.3. Minor mechanical modifications at Pumping Station No.3, including the replacement of pump impeller and discharge piping will be sufficient to handle the above additional flow. No electrical upgrade is required at this time. Based on our preliminary review, major upgrades will be required at Pumping Station No.3 when the proposed Winchester Well No.4 sewage Pump Station is upgraded for ultimate flow.

Characteristics of the Pumping Station No.3 are the following:

- Cross-sectional area = 2.13 m X 2.13 m = 4.54 m²
- Pump model: ITT FLYGT CP3140.180 HT,
- with 15 HP 600v/3ph/60Hz motor and 248 mm diameter impeller.
- Actual pump performance, as per Certificate of Approval No. 7036-4JWPUE dated May 2nd, 2000: 24.39 L/s at a total dynamic head of 71 ft (21.64 m)
- The Certificate has a typo error (71 m).
- Control level device: Milltronics MultiRanger.
- Minimum water level for pump operation (according to ITT FLYGT) = 260 mm.
- Discharge piping and valves: 100 mm diameter elbows, riser, ball valve, and gate valve.
- Forcemain: 150 mm diameter, 611 m long, with eight 45° elbows
- Discharge at gravity sewer manhole: Geodetic Elevation = 79.25 m

Surger Shirth

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

The revised pump design flow is 31.4 L/s (= 24.39 L/s from existing committed area plus 7.0 L/s from new station).

The proposed modifications consist into the following:

- Replacing the existing 248 mm diameter impeller with a 265 mm diameter impeller (referenced under Curve No. 63-480-00-3855, see Appendix V).
- Replacing the existing 100 mm diameter discharge piping and valve assembly by 150 mm diameter facilities.
- Adjusting control level elevations at ultrasonic transducer to meet new flow requirements.
- Adjusting platform and trash basket to meet new requirements; platform will be relocated above the revised high level alarm level, in order to avoid flooding under normal operation conditions.

The design pumping volumes and corresponding elevations are the following:

Design flow Q	31.4 L/s						
Lag pump volume							
= 0.06 X Q Control level spacing	1.88 m³ 0.41 m						
Lead pump volume							
= 0.15 X Q (m ³) Control level spacing	4.71 m ³ 1.04 m						

The revised geodetic elevations for Pumping Station No.3 are as follows:

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

Reference	Geodetic Elevation (m)
Top of station:	75.82
Ground Level:	75.67
Overflow invert:	73.97
Revised platform elevation:	70.60
High level alarm float:	70.43
Start lag level:	70.33
Original platform elevation:	70.18
Start lead level:	69.92
Incoming sewer invert:	69.70
Stop all pumps level:	68.88
Low level alarm (stop all pumps):	68.84
Bottom of wet well:	68.58

Total dynamic head was calculated using the following design parameters (refer to Appendix VI for detailed calculations):

- Equivalent length of 150 mm diameter pipe, between pump and gravity sewer manhole = 69 m, including allowance for fittings.
- · Friction factor and static head are reviewed for three conditions
 - Low flow conditions: C = 120 and static head (at stop both pump level) = 79.25 m - 68.88 m = 10.37 m, with one pump.
 - Q = 30.0 L/s at TDH = 25.0 m.
 - Average flow conditions: C = 130 and static head (at median pumping volume level) = 79.25 m (69.92 m + 68.88 m)/2 = 9.85 m, with one pump.
 - Q = 31.4 L/s at TDH = 25.0 m.
 - High flow conditions: C = 120 and static head (at overflow level) = 79.25 - 73.97 m = 5.28 m, with both pumps in operation.
 - \circ Q = 44.0 L/s at TDH = 28.0 m, with two pumps (22.0 L/s per pump).

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

2.6 WINCHESTER LAGOON RESIDUAL CAPACITY

The available Winchester residual capacity is adequate to accept the supplementary flow from the new sewage collection system. The Winchester Lagoons has a total capacity of 2,220 m³/d. The average daily flow rate monitored in 2003 and 2004 were 1,647 and 1,547 m³/d respectively. The sewage collection system expansion toward the west end of Winchester can therefore take place.

The existing Winchester main sewage pumping station has a capacity of 90 L/s at peak hour. The station has been designed to match the lagoon capacity (2,220 m^3 /d, or 25.5 L/s), with a 3.54 peak factor. The actual main pumping station is adequate to service the additional commercial area (supplementary flow of 3.5 L/s), without any modification.

Stantec TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

3.0 DRAWINGS

C. S. Stande

North Street

3.445655

Constants.

1999年199

Service Contraction

and the second

STOLEN PERC

の読書の記

The drawings showing the implementation of the improvements to the works are included under separate cover.

Stantec Consulting Ltd.

flow flettest

Jean Hebert, M.A.Sc., ing., P.Eng. Environment Engineer

- uppersonally

35% AMER.

のないのないで

South States

Service Service

a la companya da companya d

SC NUMBER

and the second

ALC: NO

The start

11.12.1

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX I

CERTIFICATE OF APPROVAL (SEWAGE) NO. 7036-4JWPUE DATED MAY 3RD, 2000

3AM Township of North Dundas

7036-4JWPUE DATED MAY 3RD, 2000

February 5, 2001

Ministry of the Environment 2 St. Clair Avenue, West Floor 12A Toronto, Ontario M4V 1L5

Attention: Mr. Mohamed Dhalla, P. Eng Director Section 53, Ontario Water Resources Act

Reference:Main Street Purping StationTownship of North Dundas

Dear Mr. Dhalla:

The Main Street Pumping Station is a Township owned facility that was originally constructed in the early [1970's. Both the municipality and OCWA (the agency responsible for operating the facility on behalf of the municipality) have attempted in vain to locate the "Certificate of Approval" for the original construction. The said pumping station now requires upgrading as a result of a new subdivision development.

In early 2000 the Developer that requires the pumping station upgrade submitted an "Application for Approval" for the upgrade to your Ministry. This resulted in your Ministry issuing "Certificate of Approval" Number 7036-4 JWPUE (copy attached). The said "Certificate of Approval" was issued to the Developer.

It has been brought to our attention that because the municipality owns the station, the aforementioned certificate should correctly have been issued to the municipality, not the numbered company owned by the Developer (i.e. indeed when the application was submitted to your Ministry, specific mention should have been imade that the developer applying for the certificate was doing so acting as an agent for the municipality).

At this time, therefore, we are requesting that "Certificate of Approval" Number 7036-4 JWPUE be amended to reflect that fact that the Township of North Dundas is the owner of the works. To this end we are enclosing a cheque in the amount of \$200,00 that we understand is required to cover the administrative processing costs.

Please do not hesitate to call if you have any questions or require additional clarification.

Sincerely,

の日本にいるに

Street and

EL MARKER STREET

Howard F. Smith Clerk Administrator Township of North Dundas

encl.

24. 2004 10:53AM Township of North Dundas -2001, 02:10pm From-STANTEC CONSULTING LTD No.892703/02: 6137222789 08/01 TUE 15:35 FAX 513 774 5699 THP NORIS BUNDAS CERTIFICATE OF APPROV Ministry Ministère MUNICIPAL AND DOWATE SEWAGE WORK of the de NUMBER 7036-4JWPDE Environment l'Environnement

> 1332484 Ontario Inc. R.R. #1 South Mountain, Ontario K0E 1W0

te Location: Winchester Pumping Station, South Side of Main Street, in the Township of North Dundas, United Counties of Stormont, Dundas & Glengarry

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of.

ngrading the existing sewage pumping station by replacing the existing pumps with two(2) new submersible wage pumps (one duty, one standby), each pump capable of condling 24.39 L/s against a total dynamic head [71m;

I in accordance with the Application for Approval of Municipal and Private Water and Sewage Works and Guy-Racine Subdivision, Upgrade to Winchester Pump Station Report", dated November 1999, as prepared and submitted for approval by Novatech Engineering Consultants Ltd.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as mended, you may by written notice served upon me and the Environmental Appeal Board within 15 days after eccipt of this Notice, require a hearing by the Board. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and; The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

The name of the appellant;

The address of the appellant;

The Certificate of Approval number,

The date of the Certificate of Approval;

The name of the Director;

The municipality within which the works are located;

And the Notice should be signed and dated by the ap lant.

24. 2004 10:53AM Township of North Dundas 5-2001 D2:11pm From-STANTEC CONSULTING LTD 6137222799 No.8927 T-734 Y.U04/00 09/01 TUR 15:36 FAX 613 774 5699 THP NOKI'M DURDAD This Notice must be served upon: The Director Secremy" Section 53, Ontario Water Resources Act iroamental Appeal Board Ministry of the Environment 00 Yonge St., 12th Floor 2 St Clair Avenue West, Floor 13A"). Box 2382 AND ronto, Ontario Toronto, Ontario PIET M4V ILS Further Information on the Environmental Appeal Board's requirements for an appeal can be obtained directly from the Board at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.art.gov.on.ca/ e above noted sewage works are approved under Section 53 of the Ontario Rater Resources Act. DATED AT TORONTO this 2nd day of May, 2000 THIS IS A TITUE COPY OF THE Mollamed Dhalla. P.Eng. ORIGIMAL NOTICE MAILED Director Ontario Water Resources Act ON Hay 3 PD , 2000 Section 53 SKANED 3/ District Manager, MOE Cornwall

Mr. Greg MacDonald, P.Eng., Novatech Engineering Consultants Ltd.

Souther St.

. Supposit

S. S. S. S. S.

1949 States of the

"Variation of the second

and the local

appropriate.

CANE AND

ABANK - -

NUMBER OF

Service States

STATE AND STATE

22.03%A.03%A.01

Sheet, Sheet

0000000000

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX II

GRAVITY SEWER DESIGN flow rates

	RE	ESIDENTIAL	. AREA ANI	D POPULAT	ION		CO	MM		INDUST		IN	IST	C+I+I	INFILTRATION					
A	# UNITS	POP.	CUMUL	ATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	PEAK	AREA	ACCU.	PEAK	TOTAL.	ACCU.	INFILT.	TOTAL	LENGTH	ACTUA
23			AREA	POP.	FACT.	FLOW		AREA		AREA	FACTOR		AREA	FLOW	AREA	AREA	FLOW	FLOW		DIA.
)			(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(per MOE)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)
.00	0.00	0	0.00	0	4.00	0.00	1.50	1.50			0.00		0.00	0.35	1.50	1.50	0.42	0.77	60.00	0.20
.00	0.00	0	0.00	0	4.00	0.00	0.00	1.50		~	0.00		0.00	0.35	0.00	1.50	0.42	0.77	100.00	0.20
.00	0.00	0	0.00	0	4.00	0.00	0.00	1.50			0.00		0.00	0.35	0.00	1.50	0.42	0.77	65.00	0.20
.00	0.00	0	0.00	0	4.00	0.00	0.00	1.50			0.00		0.00	0.35	0.00	1.50	0.42	0.77	22.00	0.20
				_																
.77	3.00	9	1.77	. 9	4.00	0.15	0.00	0.00			0.00		0.00	0.00	1.77	1.77	0.50	0.64	95,00	0.20
.21	2.00	6	4.98	15	4.00	0.24	0.00	0.00			0.00		0.00	0.00	3.21	4.98	1.39	1.64	23.00	0.20
.34	2.00	6	6.31	21	4.00	0.34	0.00	0.00			0.00		0.00	0.00	1.34	6.31	1.77	2.11	125.00	0.20
.00	0.00	0	0.00	0	4.00	0.00	0.81	2.31			0.00		0.00	0.53	0.81	2.31	0.65	1.18	60.00	0.25
00	0.00	0	0.00	0	4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	120.00	0.25
.00	0.00	0	0.00	. 0	. 4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	120.00	0.25
.00	0.00	0	0.00	0	4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	2.31	0.65	1.18	99.00	0.25
.00	0.00	0	0.00	0	4.00	0.00	0.00	2.31			0.00		0.00	0.53	0.00	.2.31	0.65	1.18	99.00	0.25
00	0.00	0	6.31	21	4.00	0.34	0.00	2.31			0.00		0.00	0.53	0.00	8.62	2.41	3.29	99.00	0.25
00	0.00	0	6.31	21	4.00	. 0.34	0.00	2.31			0.00		0.00	0.53	0.00	8.62	2.41	3.29	13.00	0.25
											· ·			6		1 H				
	<u> </u>]		<u> </u>												- 111 - 1		<u> </u>		<u> </u>
			DESIGN	PARAMET	ERS							Designed	: MPT		PROJEC	I: Winch	ester San	iitary Sew	er Extensio	on - Pha
V 200								a - 16 cm 11 - 1	5 atta 16											
· · · ·					as per MOE	s.										19 19				
000	./ha/da				Extraneous	Flow =		0.28	L/s/ha			Checked	: JH		LOCATIC	N: Town	ship of N	orth Dun	das	
	Jha/da				Minimum Ve	· · · ·		0.60	m/s											
00					Mannings n			0.013												
00					Persons per	Unit =		3.0	persons/unit			Dwg. Ret	ference:		File Ref.:			Date:	9-Mar-05	
	_										2									

A. 27. 194

1. K. ...

Sec. Sec.

100000

1000

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX III

FLOW AND HEAD LOW CALCULATIONS FOR SEWAGE PUMPING STATION NO.4 ON MAIN STREET

289 (S.S.C.

1.1888.54

Support States

Section 201

Sequences

in the second

New 181 1819

CENCOLOUR ALL

Main Street Sewage Pumping Station, located at Winchester Well No.4 Site Initial flow = 3.5 L/s, servicing limited commercial area

Minimum flow condition, at stop pump level, with maximum friction factor (C = 120)

Q	(L/s)	0.0	1.0	2.0	3.0	4.0
Friction C		120	120	120	120	120
Length - 100 mm dia. FM	(m)	549	549	549	549	549
Safety factor		1.03	1.03	1.03	1.03	1.03
Diameter	(mm)	100	100	100	100	100
Friction loss - 100 mm FM	(m)	0.00	0.16	0.59	1.26	2.14
Static head	(m)	3.24	3.24	3.24	3.24	3.24
TDH	(m)	3.24	3.40	3.83	4.50	5.38
Velocity within 150 mm FM	(m/s)	0.00	0.13	0.25	0.38	0.51

Average flow condition, at median pumping level, with average friction factor (C = 130)

Q	(L/s)	0.0	2.0	3.0	3.5	3.7
Friction C		130	130	130	130	130
Length - 150 mm dia. FM	(m)	549	549	549	549	549
Safety factor		1.03	1.03	1.03	1.03	1.03
Diameter	(mm)	100	100	100	100	100
Friction loss - 150 mm FM	(m)	0.00	0.51	1.08	1.44	1.60
Static head	(m)	3.19	3.19	3.19	3.19	3.19
TDH	(m)	3.19	3.70	4.27	4.63	4.79
Velocity within 150 mm FM	(m/s)	0.00	0.25	0.38	0.45	0.47

Maximum flow condition, at invert level, with minimum friction factor (C = 140)

Q	(L/s)	0.0	3.0	4.0	5.0	6.0
Friction C		140	140	140	140	140
Length - 150 mm dia. FM	(m)	549	549	549	549	549
Safety factor		1.03	1.03	1.03	1.03	1.03
Diameter	(mm)	100	100	100	100	100
Friction loss - 150 mm FM	(m)	0.00	0.94	1.61	2.44	3.42
Static head	(m)	2.05	2.05	2.05	2.05	2.05
TDH	(m)	2.05	2.99	3.66	4.49	5.47
Velocity within 150 mm FM	(m/s)	0.00	0.38	0.51	0.64	0.76

Compiled by:

Stantec Consulting Ltd

State Labor

a Nikilarak

CONSIGNATION

South States

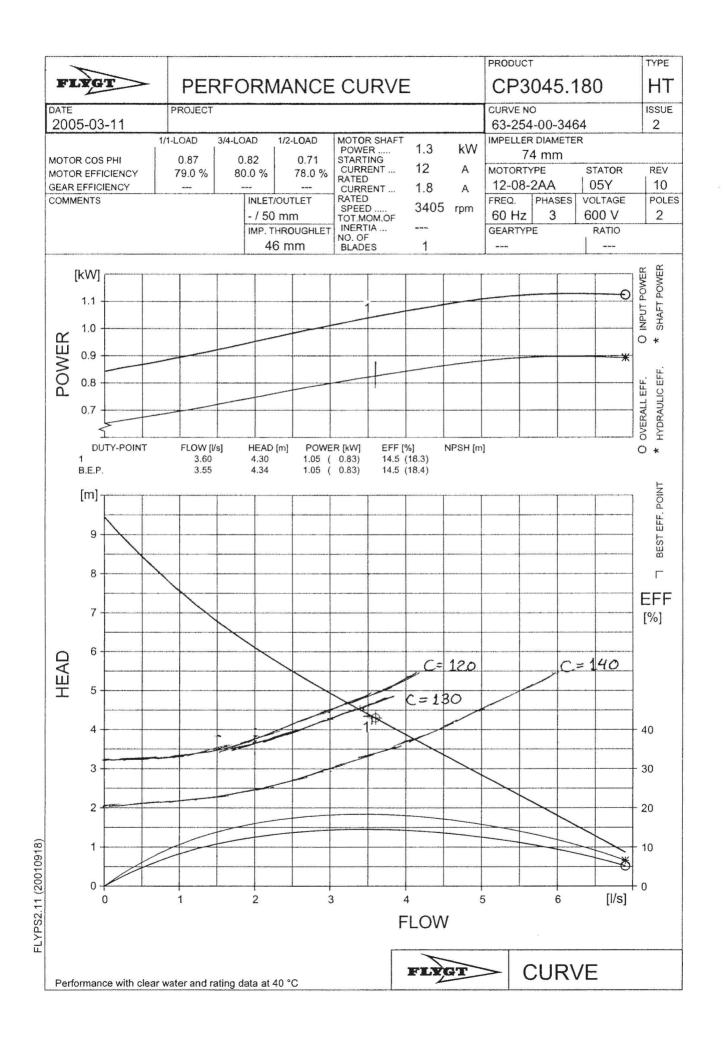
Statistics:

and the second of

Sanar 19-

THE REAL PROPERTY.

語文学で


Section 2

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX IV

P

PUMP CURVE AT SEWAGE PUMPING STATION NO.4 ON MAIN STREET

Statistical Statistics

S-minimized

THE STATE

WHITE ALL AND

Twant care

-Nedistrike

(Antipitelites)

100000000

State State

CURPERSONAL D

SPECIAL CONTRACT

NEWSTARY.

三次があるがいい

STATISTICS.

A COLOR

Support of

CHICKLESS OF

and a state

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX V

PUMP CURVE AT BAILEY STREET SEWAGE PUMPING STATION

Station No.3 at corner of Bailey Street and Main Street Pump impeller and discharge piping replaced in order to increase flow rate from 24.39 to 31.4 L/s

Minimum flow condition, at stop pump level, with maximum friction factor (C = 120)

Q	(L/s)	0.0	20.0	25.0	30.0	30.7	35.0
Friction C		120	120	120	120	120	120
Length - 150 mm dia. FM	(m)	635.9	635.9	635.9	635.9	635.9	635.9
Safety factor		1.05	1.05	1.05	1.05	1.05	1.05
Diameter	(mm)	150	150	150	150	150	150
Friction loss - 150 mm FM	(m)	0.00	7.00	10.60	14.88	15.54	19.82
Static head	(m)	10.37	10.37	10.37	10.37	10.37	10.37
TDH	(m)	10.37	17.37	20.97	25.25	25.91	30.19
Velocity within 150 mm FM	(m/s)	0.00	1.13	1.41	1.70	1.74	1.98
TDH	(ft)	34.0	57.0	68.8	82.9	85.0	99.1

Average flow condition, at median pumping level, with average friction factor (C = 130)

Q	(L/s)	0.0	20.0	25.0	30.0	31.4	32.5
Friction C		130	130	130	130	130	130
Length - 150 mm dia. FM	(m)	635.9	635.9	635.9	635.9	635.9	635.9
Safety factor		1.05	1.05	1.05	1.05	1.05	1.05
Diameter	(mm)	150	150	150	150	150	150
Friction loss - 150 mm FM	(m)	0.00	6.04	9.14	12.83	13.96	14.88
Static head	(m)	9.85	9.85	9.85	9.85	9.85	9.85
TDH	(m)	9.85	15.89	18.99	22.68	23.81	24.73
Velocity within 150 mm FM	(m/s)	0.00	1.13	1.41	1.70	1.78	1.84
TDH	(ft)	32.3	52.1	62.3	74.4	78.1	81.1

Maximum flow condition, at overflow level, with minimum friction factor (C = 140)						Two pumps :	
					= 2 X 22 L/s		
Q	(L/s)	0.0	20.0	25.0	30.0	31.4	44.0
Friction C		140	140	140	140	140	140
Length - 150 mm dia. FM	(m)	635.9	635.9	635.9	635.9	635.9	635.9
Safety factor		1.05	1.05	1.05	1.05	1.05	1.05
Diameter	(mm)	150	150	150	150	150	150
Friction loss - 150 mm FM	(m)	0.00	5.26	7.96	11.18	12.16	22.78
Static head	(m)	5.28	5.28	5.28	5.28	5.28	5.28
TDH	(m)	5.28	10.54	13.24	16.46	17.44	28.06
Velocity within 150 mm FM	(m/s)	0.00	1.13	1.41	1.70	1.78	2.49
TDH	(ft)	17.3	34.6	43.4	54.0	57.2	92.0

Compiled by

DI LI CAL

Stantec Consulting Ltd

urgen verkere

water and

-\$163)STA

SPERIOR STREET

ALL STREET, ST

With Market

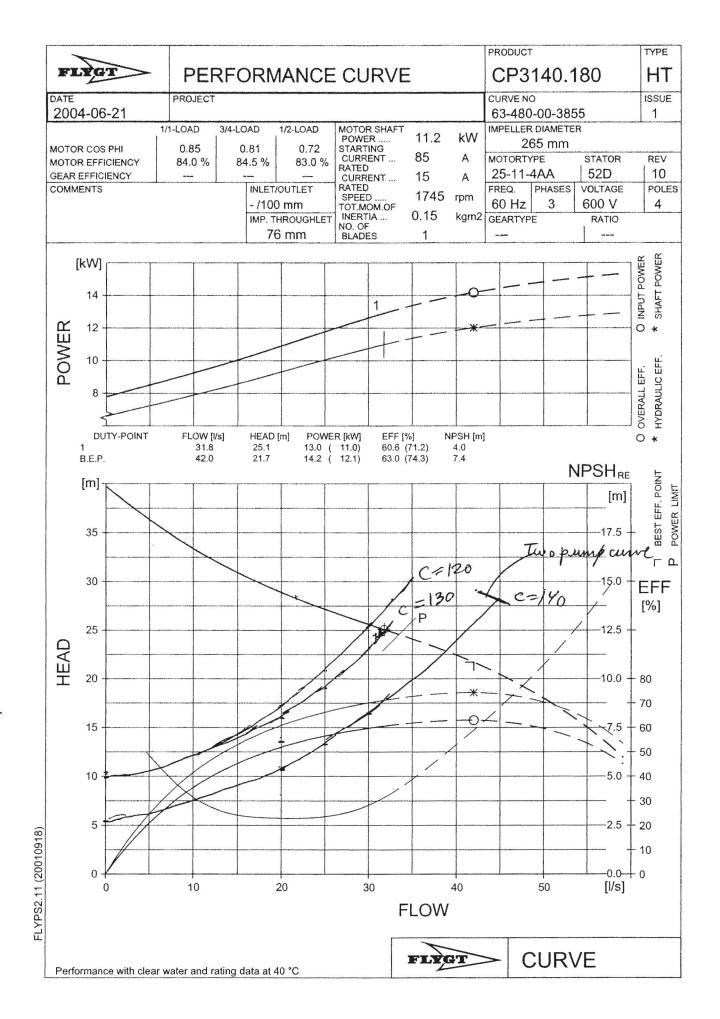
小市市市市市市市

A SAUKAR

W have

10000

a state of the


and showing

Constant of the

TOWNSHIP OF NORTH DUNDAS WINCHESTER SEWAGE SYSTEM EXPANSION AND PUMPSTATION MODIFICATION

APPENDIX VI

FLOW AND HEAD LOW CALCULATIONS FOR BAILEY STREET SEWAGE PUMPING STATION

.

. A.M. A.M. C. M. C.

and the second second

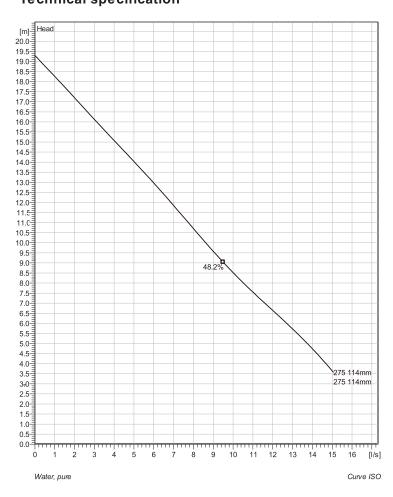
CARANCE ...

CONSIGNATION OF THE PARTY OF TH

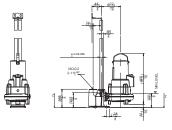
AND REAL PROPERTY.

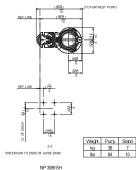
SULLANS.

Ĺ



APPENDIX C


Specifications of the Proposed Pump



NP 3069 SH 3~ Adaptive 275 **Technical specification**

Installation: P - Semi permanent, Wet

Note: Picture might not correspond to the current configuration.

General Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Possible to be upgraded with Guide-pin® for even better clogging resistance. Modular based design with high adaptation grade.

Impeller

Impeller material
Discharge Flange Diameter
Suction Flange Diameter
Impeller diameter
Number of blades

Grey cast iron 50 mm 100 mm 114 mm 2

Motor	
Motor #	N3069.160 13-08-2BB-W 2.7hp Standard
Stator variant Frequency Rated voltage Number of poles Phases Rated power Rated current Starting current Rated speed	4 60 Hz 600 V 2 3~ 2.7 hp 2.9 A 15 A 3315 rpm
Note of the second seco	0.86 0.81 0.71 78.1 % 80.4 % 80.4 %

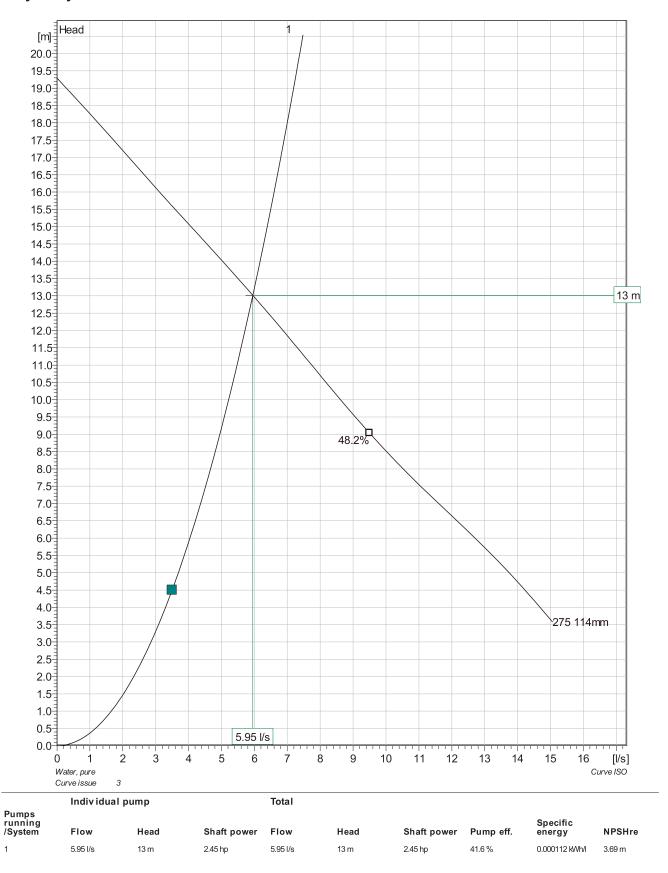
Configuration

Project	Project ID	Created by	Created on	Last update
			1/25/2018	

NP 3069 SH 3~ Adaptive 275

Performance curve

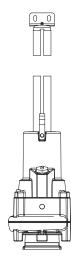
Pump

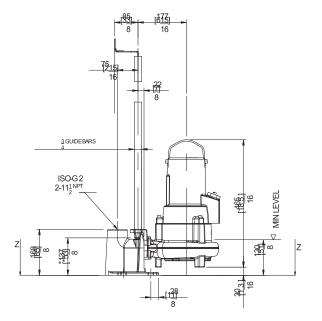

Motor

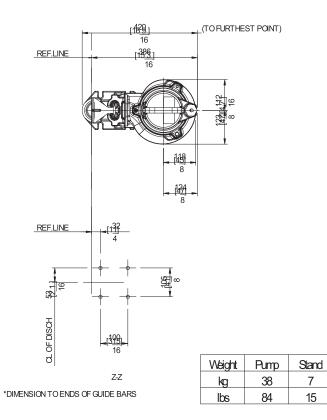
large Fla on Flang ller dian ber of bla	neter	eter 50mm r 100mm 114mm 2	Stat Frec Rate Nun Pha Rate Stat	tor # quency ed volta nber of ases ed powe ed curre rting cu ed spee	age poles er ent rrent		4 60 H 600 2 3~ 2.7 2.9 15 A	V hp A	13-08-	-2BB-V	V 2.7hp		1/1 L 3/4 L 1/2 L	.oad .oad or efficio .oad .oad	0.86 0.81 0.71	% %
[m]	lead															
19																
18	\sim															
17		\searrow														
16 15																
14																
13																13
12											_					
11																
10																
9							48	.2%								
8 7												_				
6																
5																
4														075 4		
3															14mm 14mm	
2														2101	1-11111	
1																
[%] P	ump Efficie	ency													4	1.6
	Verall Effic															
30														-275 1 -275 1	14mm 1 4m 31	18
20		\square													14mm	1.0
10																
												_	_		3	21
2 0 E'	bw er input													75 4 4 4		
2.5	haft pow ei	r PZ													mm (P1	
2.0															mm (P2	
1.5 1.0																-/
0.5																
0.0	IPSH-value:	s												-275 1	14mm	
4.2															14mm	
4.0																
-																
3.8															3	.69
3.6				5.95		+++++								+++++		
0	1 ater, pure	2 3	4	5 6			3	9 .	10	11	12	13	14	15		[l/s sisc

Project	Project ID	Created by	Created on	Last update
			1/25/2018	

NP 3069 SH 3~ Adaptive 275 Duty Analysis


Project	Project ID	Created by	Created on 1/25/2018	Last update





NP 3069 SH 3~ Adaptive 275 Dimensional drawing

Project	Project ID	Created by	Created on	Last update
			1/25/2018	

MEMORANDUM

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

> PAGE 1 OF 5

TO:	Calvin Pol, BES, MCIP, RPP Director of Planning, Building	DATE:	February 14, 2020
	and By-Law Enforcement Township of North Dundas	JOB NO.:	28855-000
FROM:	Jordan Morrissette, M.Eng., P.Eng.	CC:	Angela Rutley, Township of North Dundas Dan Belleau, Township of North Dundas
RE:	North Dundas Drinking Water		Dave Markell, Ontario Clean Water Agency
	Supply System Capacity		Sarah Gore, P.Eng., J.L. Richards & Assoc
	Expansion Class EA Technical		Limited
	Memorandum No. 1		Mark Buchanan, P.Eng., J.L. Richards &
	Population Growth and		Associates Limited
	Development Projections (Rev. 1)		
	DRAFT		
INTROD	UCTION		

leau, Township of North Dundas arkell, Ontario Clean Water Agency ore, P.Eng., J.L. Richards & Associates ichanan, P.Eng., J.L. Richards & tes Limited

The purpose of this Memorandum is to assist in establishing proposed 20 year population projections for the Village of Winchester and the Village of Chesterville within the Township of North Dundas (Township) by determining their potential development opportunities for growth. The 20 year population projections will serve as the basis for establishing the drinking water supply system requirements for the North Dundas Drinking Water Supply System Capacity Expansion Class Environmental Assessment (Class EA).

EXISTING POPULATION AND GROWTH SCENARIOS (WINCHESTER AND CHESTERVILLE)

A review of available 2016 Census information indicates that the population in 2016 within Winchester and Chesterville was approximately 2,394 and 1,677 persons, respectively. It is noted that based on 2011 Census information, the population was 2,460 people in Winchester and 1,448 people in Chesterville, representing an annual percentage growth rate of approximately -0.5% and 3.1%, respectively over the five (5) year period. Due to the development anticipated within both villages over the next 20+ years, the following growth scenarios are proposed to be used for the Class EA:

Low Growth Scenario

- Winchester: Projected annual growth rate of 1.5% from 2016 to 2019. Projected population growth from 2019 to 2039 based on the future potential development within Winchester provided by the Township (refer to Table 1) not including Phase 2 to Phase 5 of the proposed Wellings of Winchester development (Area 11);
- Chesterville: Projected at an annual growth rate of 3.5% from 2016 to 2019 and at an annual growth rate of 1.5% from 2019 to 2039.

High Growth Scenario

Winchester: Projected annual growth rate of 1.5% from 2016 to 2019. Projected population growth from 2019 to 2039 based on the future potential development within Winchester provided by the Township (refer to Table 1) including Phase 2 to Phase 5 of the proposed Wellings of Winchester development (Area 11);

PAGE 2 OF 5

• Chesterville: Projected at an annual growth rate of 3.5% from 2016 to 2019 and at an annual growth rate of 3.5% from 2019 to 2039.

POPULATION PROJECTIONS FOR WINCHESTER

In order to determine the potential population increase in Winchester for the Low Growth and High Growth Scenarios, an updated list of potential development areas and their associated types of land-use was obtained from the Township. Table 1 provides a description of the future potential developments in Winchester and the total projected units and/or commercial area estimated. The areas identified in Table 1 are illustrated in Figure M1-1.

Area	Description	Total Projected Units or Residents	Commercial Area
А	Existing – Not Connected	28	-
1	Pioneer Gas Restaurant / Car Wash	Constructed	-
2A	Commercial #31 Strip	-	1.13 ha
2B	Commercial #31 Strip	-	1.22 ha
3	Commercial #43 / #31 corner	-	0.97 ha
4	Industrial/Commercial John Deere	-	6.17 ha
5	Commercial – Main Street South side	-	0.45 ha
6	Commercial – Main Street North side	-	(0.33 L/s)
7	Motel	14	-
8	Restaurant – Country Kitchen	7	-
9A	Commercial/Residential	-	5.07 ha
9B	Commercial/Residential	-	Buildout ²
10	Commercial	Mini storage	0.88 ha
11A	Wellings of Winchester + Commercial (Phase 1)	68 (refer to Table 2)	2.28 ha
11B	Wellings of Winchester (Phase 2 to Phase 5)	432 (refer to Table 3)	
12	Commercial	-	0.8 ha
13	Residential Infill/Apartment in-houses	15	-
14	Winfields Subdivision	9	-
15	Residential – Winfields Phase 2	-	Buildout ²
16	Commercial	-	0.75 ha
17	Residential (connected)	connected	-
18	New Dundas Manor ³	-	-
19	Old Dundas Manor Building and Property	-	1.19 ha
20	Guy Racine Subdivision - Phase 3	8	-
21A	Seniors Complex	54 residents	-
21B	Development	36	-
22A	Winchester Meadows Subdivision	22	-
22B	Winchester Meadows Subdivision	22	-
23	Vacant Residential	-	Buildout ²
24A	Woods Development	78	-
24B	High Density Apartments	21	-
25A	Woods Development	19	-
25B	Singles & Semis & Townhomes	36	-

TABLE 1: WINCHESTER FUTURE POTENTIAL DEVELOPMENT¹

J.L.Richards

ENGINEERS · ARCHITECTS · PLANNERS

PAGE 3 OF 5

Area	Description	Total Projected Units or Residents	Commercial Area
26	Residential – Barnhart	-	Buildout ²
27	Residential - M. Lafortune Investments	-	Buildout ²
28A	Residential	2	-
28B	Wintonia Drive / James Street	10	-
29A	Residential	15	-
29B	Esper Lane	51	-
30	Commercial	-	4.34 ha
31	Commercial	-	0.40 ha
	LOW GROWTH SCENARIO⁴	393 units + 68 units Wellings + 54 residents	25.65 ha + 0.33 L/s
	HIGH GROWTH SCENARIO⁵	393 units + 500 units Wellings + 54 residents	25.65 ha + 0.33 L/s

List of potential development areas and their associated types of land-use were provided by the Township.
 Additional development areas are available; these development areas are projected beyond a 20-year period.

The flow from the new Dundas Manor is anticipated to remain the same as the flow from existing Dundas Manor.

The new norm the new Dundas Manor is anticipated to remain the same as the new norm exist
 Low Growth Scenario includes Phase 1 of the Wellings of Winchester Development only.

High Growth Scenario includes Phase 1 to Phase 5 of the Wellings of Winchester Development.

Although, the Township's Official Plan (based on 2016 Census information) indicates a household occupancy of 2.45 persons per unit within the United Counties of Stormont, Dundas and Glengarry, the Township has reported that based on more recent information available, the household occupancy to be used for the Class EA is 2.5 persons per unit. The Township has also identified that the Wellings of Winchester development will have a different household occupancy since the proposed development is intended to be for seniors. Table 2 and Table 3 below presents Phase 1 potential population increase for Wellings of Winchester development (Area 11) as well as the total potential population increase for Phase 2 to Phase 5.

TABLE 2: POTENTIAL POPULATION INCREASE (PHASE 1) - WELLINGS OF WINCHESTER

Unit	Number of Residential Units	Household Occupancy (Persons per unit)	Potential Population Increase
1 - bedroom	42	1.17	49
2 - bedroom	26	1.62	42
TOTAL	68		91

PAGE 4 OF 5

Unit	Number of Residential Units	Household Occupancy (Persons per unit)	Potential Population Increase
1 - bedroom	286	1.17	335
2 - bedroom	146	1.62	237
TOTAL	432		572

TABLE 3: POTENTIAL POPULATION INCREASE (PHASE 2 TO PHASE 5) - WELLINGS OF WINCHESTER

Using the number of total projected units and residents (Table 1) and the different household occupancy for Phase 1 of the Wellings of Winchester development (Table 2), the total potential population increase for the Low Growth Scenario is summarized in Table 4 below.

TABLE 4: POTENTIAL POPULATION INCREASE IN WINCHESTER (LOW GROWTH SCENARIO)

Number of Residential Units	Household Occupancy (Persons per unit)	Number of People (based on units)	Number of Additional Residents (Seniors Complex)	Potential Population Increase	
393	2.5	983	54	1,037	
68	See Table 2	91	-	91	
461	-	1,074	54	1,128	
 The above equivalent population is based on the Low Growth Scenario which does not include Phase 2 to Phase 5 of Area 11 – Wellings of Winchester Development. 					

Using the above information, the 2039 population projections for the Low Growth and High Growth Scenarios in Winchester were determined and presented in Table 5.

TABLE 5: POPUL	ATION PROJECTIONS	IN WINCHESTER	(2016 – 2039)

	Low Growth Scenario		High Growth Scenario		
Year	Projected Population Increase (Persons)	Population Projected (Low Growth Scenario)	Projected Population Increase (Persons)	Population Projected (High Growth Scenario)	
2016	-	2,394 ¹	-	2,394 ¹	
2019	108 ²	2,502	108 ²	2,502	
2039	1,128 ³	3,630	1,128 ⁴ + 572 ⁵ 4,202		
 Population based on the 2016 Census Information for Winchester. 2019 population increase is based on an assumed annual growth rate of 1.5%. Population the network of the network					

3. Based on the potential population increase for Low Growth Scenario identified in Table 4.

4. Based on the potential population increase for Low Growth Scenario (including Phase 1 of the Wellings of Winchester development) identified in Table 4.

5. Based on the potential population increase for Phase 2 to Phase 5 of the Wellings of Winchester development identified in Table 3.

PAGE 5 OF 5

POPULATION PROJECTIONS FOR CHESTERVILLE

As determined in consultation with the Township, Table 6 illustrates the projected population for the Low Growth and High Growth Scenarios for Chesterville to 2039 based on annual growth rates of 1.5% and 3.5% respectively.

TABLE 6: POPULATION PROJECTIONS IN CHESTERVILLE (2016	5 – 2039)
---	-----------

	Low G	rowth Scenario	High Growth Scenario		
Year	Annual Projected Growth Rate (%)	Population Projected (Low Growth Scenario)	Annual Projected Growth Rate (%)	Population Projected (High Growth Scenario)	
2016	-	1,677 ¹	-	1,677 ¹	
2019	3.5 ²	1,853	3.5 ²	1,853	
2039	1.5 ²	2,409	3.5 ²	3,027	

1. Population based on the 2016 Census Information for Chesterville.

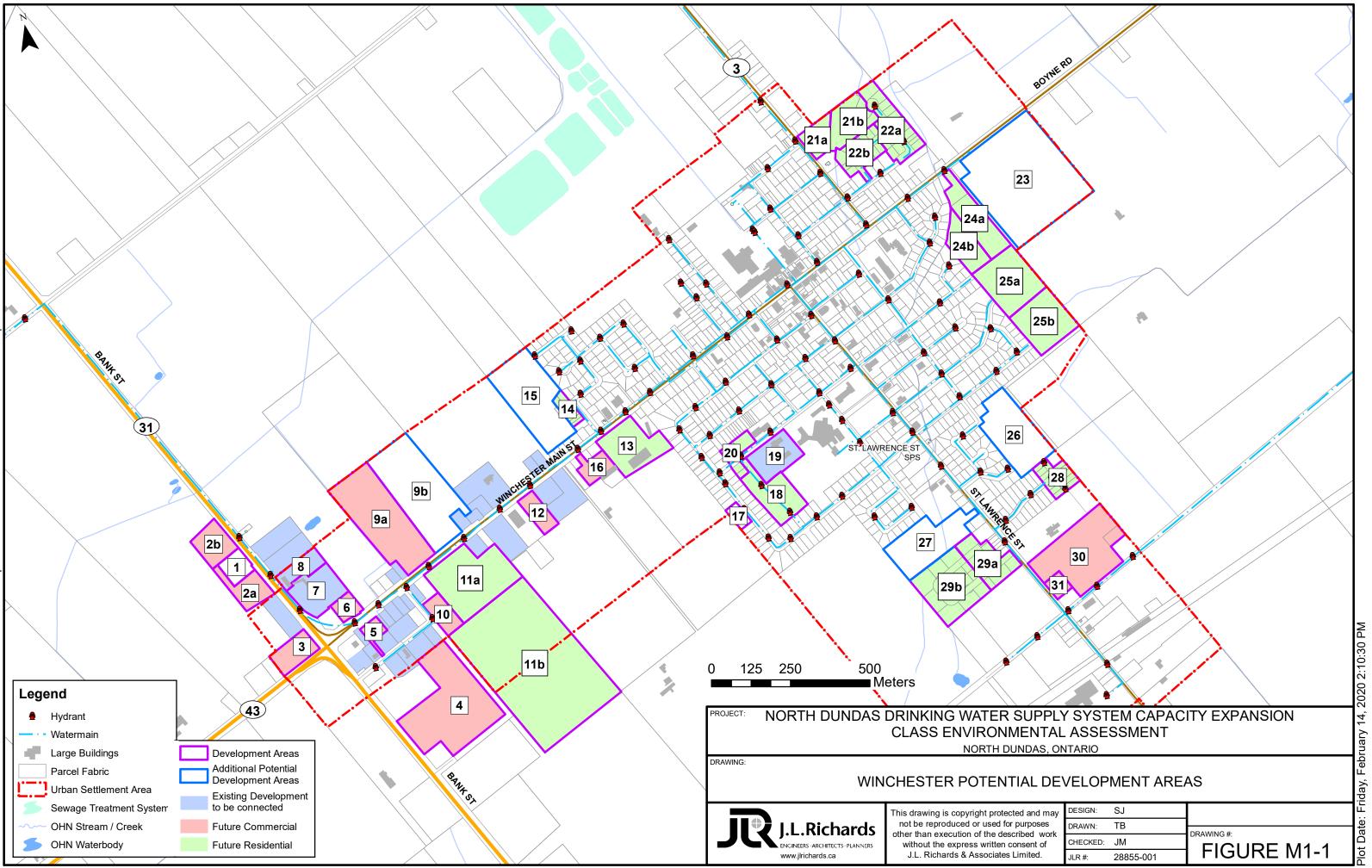
2. 2019 population increase is based on an assumed annual growth rate of 3.5%.

3. Low annual growth rate (1.5%) and high annual growth rate (3.5%) developed in consultation with the Township.

TOTAL PROJECTED POPULATION FOR CLASS EA

As summarized in Table 7, the total projected population for Winchester and Chesterville based on the Low Growth and High Growth Scenarios are 6,039 and 7,229 people, respectively. These population projections will be used to determine water supply requirements for the drinking water system as part of the Class EA.

Village	2019 Total Population	Total Projected Population (Low Growth Scenario)	Total Projected Population (High Growth Scenario)
Winchester	2,502	3,630	4,202
Chesterville	1,853	2,409	3,027
TOTAL	4,355	6,039	7,229


Prepared by

Reviewed by

J.L. RICHARDS & ASSOCIATES LIMITED

J.L. RICHARDS & ASSOCIATES LIMITED

Sara Jamaliniya, M.Eng.

			-	
ected and may	DESIGN:	SJ		L
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	-
consent of	CHECKED:	JM		(
es Limited.	JLR #:	28855-001	FIGURE M1-1	i

TECHNICAL MEMORANDUM

J.L. Richards & Associates Limited 700 - 1565 Carling Avenue Ottawa, ON Canada K1Z 8R1 Tel: 613 728 3571 Fax: 613 728 6012

Page 1 of 37

To: Khurram Turino, M.Eng., P.Eng. Director of Public Works Township of North Dundas Date: December 16, 2020

JLR No.: 28855-001

CC: Angela Rutley, Township of North Dundas Mary-Lynn Plummer, Township of North Dundas

- From: Annie Williams, P.Eng. Mark Buchanan, P.Eng.
- Re: Township of North Dundas Water and Wastewater Servicing Study

BACKGROUND

J.L. Richards & Associates Limited (JLR) carried out a Water and Wastewater Servicing Study for the Township of North Dundas (Township) to assess the ability of existing infrastructure to support future growth and development. The findings of this servicing study indicate that municipal infrastructure works, including but not limited to the items listed below, are required to fully service the anticipated future development throughout the Township:

- Watermains and appurtenances to connect to existing and proposed future developments;
- Forcemains and sanitary sewers to connect to existing and proposed future developments;
- Watermain capacity upgrades to accommodate increased demand;
- Sanitary sewer capacity upgrades to accommodate increased demand;
- Upgrades to existing pumping station(s);
- New sewage pumping stations; and
- Additional water tank storage.

The purpose of this memorandum is to assess the impact of projected future development on the existing water and wastewater infrastructure in the Township, identify conceptual-level upgrade requirements to accommodate this growth, and prepare an opinion of probable cost (OPC) of the conceptual-level upgrades. Generally, the methodology associated with this study comprises the following:

- Consult with the Township to confirm the expected development areas for near term, mid term, long term and build-out scenarios;
- Estimate future water and sanitary system flows based on projected future development identified by the Township;
- Update existing water and sanitary system models based on the projected future flows;
- Identify conceptual-level upgrades required for major infrastructure (i.e., trunk sewers, pumping stations, lagoon) for the future scenarios; and
- Prepare a conceptual-level (Level 'D') OPC for all major infrastructure upgrades.

It is important to note that the results of this study are *highly* dependent on the extent and rate of growth that the Township is projecting and also on the assumptions used in determining future water and wastewater flows associated with this growth. In some cases, both the growth rate combined with the assumptions made regarding the type of growth and application of standard guidelines may be perceived as conservative estimates of the timing for implementation of the resulting infrastructure – which may in fact be the case. However, with the lack of any other information related to growth rate, extent and type, the application of

Page 2 of 37

standard guidelines was deemed appropriate for the purposes of this assignment. If the Township can provide additional site specific information, it is possible that the timing for implementation of the required infrastructure upgrades and expansions to support the future growth could be extended further out.

PROJECTED FUTURE DEVELOPMENT

Based on Census data, the population of the Township was reported as 2,394 for Winchester and 1,677 for Chesterville in 2016, giving a total population of 4,071 in 2016. The existing 2019 population was calculated based on a 1.5% average annual growth rate for Winchester and a 3.5% average annual growth rate for Chesterville. The future growth projections in Winchester were established with the Township based on the number of anticipated units for future residential areas and the land area in hectares for the future commercial areas. The projected population increase associated with future residential development was calculated based on a residential population density of 2.5 persons/unit. Note the Wellings of Winchester development had a more specific population projection as explained in the next section. For the build-out scenario, the number of projected residential units is currently unknown, so a population density of 35 persons/ha was assigned based on parcel area that is comparable to Winchester's existing density. The future growth projections in Chesterville were estimated using the 3.5% average annual growth rate based on the 2016 population (equal to approximately 59 additional people per year) up to the long term scenario, and the build-out scenario was assumed to remain unchanged from the long term scenario.

Refer to the "North Dundas Drinking Water Supply System Capacity Expansion Class EA Technical Memorandum No. 1 – Population Growth and Development Projections (Rev. 1)" (JLR, February 14, 2020) in Attachment 1 that provides a detailed summary of the future development areas and their corresponding populations. Figures No. 1 to 4 depict the future development area locations over the near, mid, long term and build-out planning horizon.

Future commercial development was not included in the population projections, but their anticipated water demands were accounted for in the assessment as presented in the next section. It is important to note that guidelines for commercial water consumption values, when limited information is available, are generally more conservative to account for unknown types of development and the large variation in use; therefore, there may be opportunities to refine the projected flows with further details as part of a Master Plan. This could potentially have a significant impact on the timing for capital works projects. It was also assumed that the population of all existing developments would remain constant under future scenarios. Based on these assumptions, the projected populations for each scenario were estimated and are summarized in Table 1 below.

	Winchester		Chesterville		Total
Scenario	Number of Added Units	Population Increase From Previous Scenario	Population Increase From Previous Scenario	Population	Population Increase From Existing (2019)
Existing (2019)	n/a	n/a	n/a	4,355	n/a
Near Term (1-5 year)	273	509	294	5,158	803
Mid Term (5-10 year)	220	450	293	5,901	1,546
Long Term (10-20 year)	403	750	587	7,238	2,883
Build-Out (20+ year)	(20.56 ha)	1,161	0	8,399	4,044

Table 1: Population Projections

Page 3 of 37

WATER DISTRIBUTION SYSTEM – FLOW PROJECTIONS

EXISTING CONDITIONS

JLR developed a new hydraulic water model for the Township (Winchester and Chesterville) in support of the Water Supply Expansion Municipal Class EA. Refer to the memorandum "Township of North Dundas – Hydraulic Water Model" (JLR, August 28, 2020).

From the above-noted memorandum, the modelled water demands for existing conditions were based on monthly average day demand data provided by the Township over the past five (5) years (2015 – 2019). The demands were distributed throughout the Township based on parcel count. Peaking factors from the Ministry of the Environment, Conservation and Parks (MECP) Design Guidelines for Drinking Water Systems (2008), herein referred to as the MECP Design Guidelines, were used to estimate the total maximum day and peak hour demand. Two (2) high water users were accounted for in Winchester: Lactalis (formerly Parmalat) and the Winchester District Memorial Hospital. The peak hour demand for Lactalis is unchanged from the maximum day demand as this value is understood to remain consistent and represents the upper limit of water demand from the Lactalis site. Table 2 summarizes the existing water demands in the model.

Water User	Water Demand Scenario				
water Oser	Average Day (L/s)	Maximum Day (L/s)	Peak Hour (L/s)		
Lactalis (formerly Parmalat)	14.68	22.02	22.02		
Winchester District Memorial Hospital	0.70	1.05	1.90		
Township of North Dundas (Winchester & Chesterville, including high water users)	27.90	55.80	66.08		

Table 2: Existing (2019) Water Demand Summary

FUTURE CONDITIONS

The design parameters used to calculate the future water demands are summarized in Table 3. All design parameters are in accordance with the MECP Design Guidelines or other assumptions are made where necessary. The MECP does not specify peaking factors for commercial areas, hence the City of Ottawa Design Guidelines for Water Distribution (July 2010) were used.

Table 3:	Future Water Demand Design Paran	neters
----------	----------------------------------	--------

Future Water Flow Projection – Design Parameters					
Parameter Residential Commercial					
Population Density (per unit)*	2.5 person/unit	n/a			
Population Density (per hectare)	35 person/ha	n/a			
Average Day Flow	350 L/cap/day	28,000 L/ha/day			
Maximum Day Flow	2.0 x Average Day	1.5 x Average Day			
Peak Hour Flow	1.5 x Maximum Day	1.8 x Maximum Day			

*The Wellings of Winchester development (Phases 1-5) was assigned a population density of 1.17 person/unit for 1-bedroom units and 1.62 person/unit for 2-bedroom units.

Page 4 of 37

For Chesterville, the population growth (additional number of people) was assigned the residential average day flow of 350 L/cap/day, and this additional consumption was added to the existing demands.

It is noted that some specific areas were exceptions to the aforementioned design parameters, summarized as follows:

- The Wellings of Winchester (development 11) include a total of 500 units within all five (5) phases. These
 units were assigned more specific population densities based on their 1-bedroom and 2-bedroom unit
 counts. Phases 1-2 (development 11a) are incorporated in the near term scenario, Phase 3 (development
 11b) is incorporated in the mid term scenario, and Phases 4-5 (development 11c) are incorporated in the
 long term scenario.
- Area A (which includes several individual residential units) within the long term scenario was divided and proportionally assigned to the nearest representative model node based on unit count.
- The high water user Lactalis was assigned a future average day demand of 16.2 L/s (1,400 m³/d) and a future maximum day and peak hour demand of 24.3 L/s (2,100 m³/d). These demands remained the same for all future scenarios. The peak hour demand is unchanged from the maximum day demand as this value is understood to remain consistent and represents the upper limit of water demand from the Lactalis site.

Based on these design parameters and the existing and projected water demands under near term (1-5 year), mid term (5-10 year), long term (10-20 year) and build-out (20+ year), the following water demand projections were calculated:

Demand Scenario	hand Scenario Average Day L/s (m³/day)		Peak Hour L/s <i>(m³/day)</i>
Existing (2019)	27.90 (2,410.6)	55.80 (4,821.1)	66.08 <i>(5,709.3)</i>
Near Term (1-5 year)	34.23 (2,957.7)	66.92 (5,782.3)	82.33 (7,113.3)
Mid Term (5-10 year)	40.48 (3,497.7)	77.80 (6,722.3)	100.11 (8,649.2)
Long Term (10-20 year)	49.79 (4,301.6)	94.47 (8,162.2)	126.85 (10,960.2)
Build-out (20+ year)	54.49 (4,708.1)	102.98 (8,897.7)	140.43 <i>(12,133.2)</i>

Table 4: Water Demand Projections

Page 5 of 37

It is noted that the type of units expected within various residential areas and the specific type of commercial use expected within future commercial lands can have a significant influence on the water demands projected for the future scenarios. With limited information currently available regarding the details of future developments, design guideline values for the projected flows have been used to identify various upgrades. Based on our experience, guideline values are generally considered conservative to account for unknowns when limited information is available and there may be opportunity to refine the projected demand details as part of a future assignment.

WATER DISTRIBUTION SYSTEM – WATER MODELLING

The hydraulic water model was used to assess the water distribution system under existing, near term, mid term, long term, and build-out demand conditions, and to determine if capacity upgrades to the existing watermains will be required to accommodate the anticipated growth.

EXISTING CONDITIONS

The hydraulic water model was updated to reflect the 'existing' conditions of the current water distribution system. It was then used to simulate the performance of the current system under existing flow conditions. The following operating conditions were assumed for these simulations:

- The existing average day scenario assumes that no pumps are operating, while the Winchester elevated storage tank level is at 113.17 m (tower start elevation provided from OCWA) and the Chesterville elevated storage tank level is at 110.77 m.
- The existing maximum day plus fire flow scenario assumes that several pumps (in Winchester: Well 1, Well 5, Well 6, Well 7B, Reservoir Duty Pump 1; and in Chesterville: Well 5, Well 6, Reservoir High Capacity Pump 3) are operating, while the Winchester elevated storage tank level is at 113.17 m and the Chesterville elevated storage tank level is at 110.77 m. In addition, the Winchester reservoir level is at 78.81 m and the Chesterville reservoir level is at 71.80 m.
- The existing peak hour scenario assumes that several pumps (in Winchester: Well 1, Well 5, Well 6, Well 7B, Reservoir Duty Pump 1; and in Chesterville: Well 5, Well 6, Reservoir Duty Pump 1) are operating, while the Winchester elevated storage tank level is at 113.17 m and the Chesterville elevated storage tank level is at 110.77 m. In addition, the Winchester reservoir level is at 78.81 m and the Chesterville reservoir level is at 71.80 m.

Note that under the average day, maximum day and peak hour scenarios, the following MECP Design Guidelines are applicable:

- The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi), and in occupied areas shall not exceed 552 kPa (80 psi).
- <u>Maximum Day</u>: Pressure is to be within the range of 345 kPa (50 psi) and 480 kPa (70 psi).
- <u>Maximum Day + Fire Flow</u>: Residual pressure at any point in the distribution system shall not be less than 140 kPa (20 psi).
- <u>Peak Hour</u>: Pressure is to be above 275 kPa (40 psi).

A fire flow rate of 45 L/s has been targeted for this study as a reasonable level of service to meet the minimum water supply flow rate in accordance with the Ontario Building Code for a typical two storey single family home.

Page 6 of 37

A summary of the results of these simulations is provided in Table 5.

Table 5: Hydraulic Water Model Results – Existing Conditions
--

Demand Scenario	General Results	Notes
Average Day	Good. Pressure Range: 248(36) – 418 (61) kPa (psi)	These results are for the junctions and hydrants in the Winchester and Chesterville pressure zones only. All pumps are off in this simulation. Only two (2) hydrants experience pressures below 275 kPa and there are no customer connections in the vicinity of these hydrants.
Maximum Day + Fire Flow	Good. Fire Flow Availability: 26-314 L/s	These results are for the hydrants in the Winchester and Chesterville pressure zones only. Normal pumps are operating in this simulation, with the exception of the Chesterville reservoir where only one high capacity pump is operating. There are twenty-one (21) hydrants which are currently expected to have lower fire flow availability (less than 45 L/s). These hydrants are located along dead-end watermains or at the outer extents of the distribution system. All other nodes have expected fire flow availability in excess of 45 L/s.
Peak Hour	Good. Pressure Range: 276(40) – 548 (79) kPa (psi)	These results are for the junctions and hydrants in the Winchester and Chesterville pressure zones only. Normal pumps are operating in this simulation. All nodes experience pressures above 275 kPa.

FUTURE CONDITIONS

The future near term, mid term, long term, and build-out water demands were added to the model under average day, maximum day and peak hour conditions, in accordance with the locations and units identified in Figures No. 1 to 4. In addition to using the same operating conditions as those used in the existing conditions simulations (described above), the following assumptions were made for the future model simulations:

- A 200 mm diameter PVC watermain loop was modelled within each future residential development area. Assumed future watermains were extended from existing dead end streets or the most likely connection points. Continuous looping through several phases of large residential developments was also assumed where applicable. Future residential demands were assigned to a single representative junction node within the development parcel. Elevations for these junction nodes were based on existing topography obtained from satellite imagery.
- Future commercial demands were assigned to the nearest junction node in the model along the existing watermain network.
- A 300 mm diameter PVC watermain was modelled in all future scenarios to create a loop between Main Street West and Fred Street, through the future Wellings of Winchester residential development. This will provide expected fire flows to achieve targeted rate of 45 L/s and increase water supply redundancy on the west side of Winchester. Currently the west side of Winchester is serviced by a single 200 mm diameter watermain. A watermain break of potential future maintenance would impair water service to the west service area for the west area for the duration of the repair or maintenance. For reference the City of Ottawa requires that 50 units or more to be looped by redundant water service in the event of a potential water break or maintenance.

Page 7 of 37

A 300 mm diameter watermain upgrade was modelled on St. Lawrence Street between Gypsy Lane and Main Street West / Gordon Street in the mid term, long term, and build-out scenarios, to provide a larger diameter trunk connection between the Winchester reservoir and the elevated storage tank. An increase in the Township's storage capacity is warranted in the mid term scenario and this upgrade will allow for increased pumping capacity between the Winchester reservoir and the elevated storage tank. A new storage tank with equivalent operating levels was modelled at the Winchester Reservoir site and the existing booster pump was used for the presented simulation results, in order to maintain a consistent pump curve for comparison. When the water storage is expanded with the assumed construction of a new at-grade storage tank, the booster pump is expected to be upgraded as well. Water storage and distribution system upgrades are discussed in more detail in later sections.

Note that for the maximum day demand + fire flow simulations, the results are first presented for all scenarios without the Wellings of Winchester loop to Fred Street and without any upgrade on St. Lawrence Street, in order to establish a base line to assess watermain upgrades. The results with the assumptions listed above are presented afterwards, followed by the results for a final simulation (as later described) under build-out conditions.

The following tables summarize the model results for the Winchester and Chesterville pressure zones based on the percentage of junctions in the model within each stated pressure range or available fire flow range, in order to compare system performance across the existing and future development scenarios. Model schematics for all scenarios are included in Attachment 2.

Average Day Demand

Table 6 presents the average day simulation results for existing and future scenarios.

Average Day Demand						
	Pressure (kPa)		Future			
Erom	То	Existing	Near Term	Mid Term	Long Term	Build-out
From	То		1-5 year	5-10 year	10-20 year	20+ year
	<=275	0.5%	0.5%	0.5%	0.5%	0.5%
>275	<=350	26.5%	26.6%	27.1%	29.9%	30.3%
>350	<=480	73.0%	72.9%	72.4%	69.6%	69.3%
>480	<=550	0.0%	0.0%	0.0%	0.0%	0.0%
>550	<=700	0.0%	0.0%	0.0%	0.0%	0.0%
>700		0.0%	0.0%	0.0%	0.0%	0.0%

Table 6: Hydraulic Water Model Results - Average Day Demand

Under average day demand, system pressures under future conditions are expected to decrease slightly from existing conditions due to increased demands, but are mostly anticipated to remain comparable to existing conditions and above the minimum recommended pressure of 275 kPa (40 psi), in accordance with the MECP Design Guidelines. Only two (2) hydrants do not achieve 275 kPa: hydrant H-194 along the transmission main from Well #7 (topographical high point), and hydrant H-174 near Well #6. No customers are connected to the water distribution system in the vicinity of these two hydrants.

Peak Hour Demand

Table 7 presents the peak hour simulation results for existing and future scenarios.

Peak Hour Demand						
Pressure (kPa)			Future			
Erom	То	Existing	Near Term	Mid Term	Long Term	Build-out
From	То		1-5 year	5-10 year	10-20 year	20+ year
	<=275	0.0%	0.3%	0.3%	0.3%	0.5%
>275	<=350	17.5%	20.4%	19.7%	24.6%	26.5%
>350	<=480	79.4%	76.2%	80.1%	75.2%	73.0%
>480	<=550	3.2%	3.1%	0.0%	0.0%	0.0%
>550	<=700	0.0%	0.0%	0.0%	0.0%	0.0%
>700		0.0%	0.0%	0.0%	0.0%	0.0%

Table 7: Hydraulic Water Model Results – Peak Hour Demand

Under peak hour demand, overall system pressures under future conditions are expected to decrease slightly from existing conditions due to increased demands, but are mostly anticipated to remain comparable to existing conditions and above the minimum recommended pressure of 275 kPa (40 psi), in accordance with the MECP Design Guidelines. The pressure results are seen to increase slightly in the mid term scenario due to the watermain upgrade on St. Lawrence Street. Junction node J-263 (Lactalis) yields a consistent model pressure result of less than 275 kPa under future scenarios, due to the high water demand assigned to this node which is located at a dead-end 150 mm diameter water service. It is recommended that the Lactalis water service configuration and details be reviewed for any opportunities to refine the model to more accurately represent the site servicing at this facility. The two hydrants which experienced low pressures in the average day demand simulation (H-194 and H-174) are expected to experience pressures slightly above but close to 275 kPa, and no customers are connected to the water distribution system in the vicinity of these two hydrants.

Maximum Day Demand + Fire Flow

Table 8 presents the maximum day plus fire flow simulation results for existing and future scenarios, assuming that there is no 300 mm diameter watermain loop between Main Street West and Fred Street through the Wellings of Winchester, and assuming that there is no 300 mm diameter watermain upgrade on St. Lawrence Street. This table establishes a base line of available fire flows throughout the Township assuming that future growth is accommodated solely by the existing water distribution system and watermain extensions required for residential development.

Page 9 of 37

	Maximum Day Demand + Fire Flow					
Available F	ire Flow (L/s)		Future			
Erom	Та	Existing	Near Term	Mid Term	Long Term	Build-out
From	То		1-5 year	5-10 year	10-20 year	20+ year
	<=30	2.3%	2.2%	2.2%	3.0%	2.9%
>30	<=45	7.3%	6.6%	7.8%	13.2%	12.5%
>45	<=75	41.7%	40.5%	39.0%	36.2%	32.9%
>75	<=100	22.0%	23.8%	22.9%	18.7%	22.5%
>100	<=150	20.2%	18.9%	21.6%	23.0%	23.3%
>150	<=250	6.0%	7.5%	6.1%	5.5%	5.4%
>250		0.5%	0.4%	0.4%	0.4%	0.4%

Table 8: Hydraulic Water Model Results – Maximum Day Demand + Fire Flow Without Loop to Fred Street or St. Lawrence Street Upgrade

It is noted that the existing water distribution system is not expected to provide adequate water storage starting in the mid term scenario as calculated in accordance with the MECP Design Guidelines, and the available fire flow is severely limited in some areas (such as the Wellings of Winchester) without the connection to Fred Street.

Table 9 presents the maximum day plus fire flow simulation results for existing and future scenarios, assuming the installation of a 300 mm diameter watermain loop between Main Street West and Fred Street through the Wellings of Winchester starting in the near term, and assuming the construction of a 300 mm diameter watermain upgrade on St. Lawrence Street to accompany the increased storage at the Winchester Reservoir (discussed in the next sections).

Table 9: Hydraulic Water Model Results – Maximum Day Demand + Fire Flow	
With Loop to Fred Street (Near Term +) and St. Lawrence Street Upgrade (Mid Term +)

	Maximum Day Demand + Fire Flow					
Available Fi	able Fire Flow (L/s) Future					
From	То	Existing	Near Term	Mid Term	Long Term	Build-out
FIOIII	10		1-5 year	5-10 year	10-20 year	20+ year
	<=30	2.3%	1.8%	1.7%	2.6%	2.5%
>30	<=45	7.3%	6.2%	6.1%	6.0%	5.0%
>45	<=75	41.7%	36.1%	33.8%	32.8%	29.2%
>75	<=100	22.0%	23.8%	22.5%	21.3%	22.9%
>100	<=150	20.2%	22.5%	17.3%	21.7%	25.0%
>150	<=250	6.0%	9.3%	14.7%	12.3%	12.1%
>250		0.5%	0.4%	3.9%	3.4%	3.3%

Under maximum day demand, fire flow availability under future conditions is expected to remain comparable to existing conditions. There are some hydrants which are expected to have fire flow availabilities less than 45 L/s. These hydrants are located along dead-end watermains or at the outer extents of the distribution system. In comparison to the base line results presented in Table 8, the fire flows are improved with the connection to Fred Street and the St. Lawrence Street watermain upgrade.

Page 10 of 37

Table 10 presents the maximum day plus fire flow simulation results for the build-out scenario, assuming the installation of a full 300 mm diameter watermain loop within Winchester. This includes the loop to Fred Street and the St. Lawrence Street watermain upgrade as mentioned previously, but also includes a 300 mm diameter watermain upgrade on Main Street West and the 300 mm diameter watermain upgrade on Fred Street, as discussed in the next section.

Maximum Day Demand + Fire Flow					
Available Fi	re Flow (L/s)	Future			
Erom	Та	Build-out			
From	То	20+ year			
	<=30	2.1%			
>30	<=45	5.4%			
>45	<=75	28.3%			
>75	<=100	19.6%			
>100	<=150	18.8%			
>150	<=250	20.8%			
>250		5.0%			

Table 10: Hydraulic Water Model Results – Maximum Day Demand + Fire Flow With Full 300 mm diameter Watermain Loop in Winchester

Table 10 shows that the full 300 mm diameter watermain loop in Winchester will improve the available fire flows. It is noted that the increased storage capacity at the Winchester Reservoir would also be accompanied by a pump upgrade, which could increase the available fire flows experienced throughout Winchester.

POTENTIAL WATERMAIN UPGRADES

The current water distribution system in Winchester includes a 200 mm diameter PVC watermain along Main Street West. Any disruption along this length of watermain would result in a significant reduction in the level of service experienced in the west end of Winchester, since this watermain is the sole feed from the elevated tank to the west end. A 300 mm diameter watermain upgrade along Main Street West from approximately 100 m east of Dawley Drive to Gordon Street would be a beneficial upgrade to the Winchester system as a whole. This work could be done in conjunction with the proposed sanitary sewer forcemain construction along Main Street West as described in the wastewater section. This upgrade would provide improved fire flow availability to all areas in the west end, such as the future Wellings of Winchester residential development. Additionally, the potential loop from Main Street West to Fred Street through the Wellings of Winchester would provide a redundant water supply to the west end.

There is an existing asbestos cement watermain along St. Lawrence Street in Winchester ranging from 150 mm in diameter to 200 mm in diameter. This watermain could be upgraded to a 300 mm diameter watermain between Gypsy Lane and Main Street West / Gordon Street, providing a larger diameter trunk connection between the Winchester reservoir and the elevated storage tank. An increase in the Township's storage capacity (accompanied with a booster pump upgrade) is warranted in the mid term scenario and this upgrade will allow for increased pumping capacity between the Winchester reservoir and the elevated storage tank.

Page 11 of 37

There is an existing 150 mm diameter asbestos cement watermain and an existing 200 mm diameter PVC watermain along Fred Street. This watermain could be upgraded to a 300 mm diameter watermain between the easement (approximately 100 m east of Christie Lane) and St. Lawrence Street, which would complete an overall 300 mm diameter trunk watermain loop throughout Winchester if combined with the aforementioned watermain upgrades.

While the foregoing model results indicate that the existing distribution system is expected to provide a comparable level of service under the assessed future development conditions, it is recommended that a Water Distribution System Master Plan be developed to evaluate and select the preferred trunk water servicing routes and options. Since additional water storage is required to address a future storage deficit, a Master Plan would be beneficial in the selection of the preferred water storage configuration and location as it relates to the distribution system. Subject to the appropriate Municipal Class Environmental Assessment (Schedule B Class EA), a future at-grade water storage reservoir and booster pump upgrade is anticipated to address the future water storage requirements while potentially increasing system redundancy and supplementing fire flow availability.

Figures 5 to 9 depicts the aforementioned potential watermain upgrades and anticipated timing.

WATER STORAGE – CAPACITY REVIEW

For water storage, both Winchester and Chesterville have an elevated storage tank and an at-grade storage reservoir. Table 11 summarizes the existing storage within the Township.

Storage Facility	Existing Capacity (m ³)
Winchester Water Tower	2,300
Winchester Storage Reservoir	400
Winchester Storage Capacity	2,700
Chesterville Water Tower	567.5
Chesterville Storage Reservoir	407
Chesterville Storage Underground Suction Well	122
Chesterville Storage Capacity	1,096.5
Total Storage Capacity	3,796.5

According to MECP Design Guidelines, the storage volume requirements are calculated as follows:

Total Treated Water Storage Requirement = A + B + C

- A = Fire Storage
- B = Equalization Storage (25% of max day demand)

C = Emergency Storage (25% of [A + B])

Page 12 of 37

Table 12 and Table 13 summarize the estimated water storage requirements under the existing and future scenarios based on the MECP Design Guidelines. The storage capacities were assessed for Winchester and Chesterville separately because it is understood that their storage facilities are not used interchangeably to supply both systems (i.e., the Winchester elevated tank does not provide storage to Chesterville).

The equivalent populations in Winchester were taken as the actual populations as per the growth projections for each future scenario. For the build-out population, the four (4) future residential areas were assigned with a population density of 35 persons/ha while the single future commercial area's average day water demand was converted to an equivalent population based on 350 L/cap/day. Also added was the Lactalis property by using its parcel area (6.2 ha) and converting it to an equivalent residential population assuming 35 persons/ha. The total equivalent populations as presented in the table were used to interpolate the required fire flows and durations from Table 8-1 of the MECP Design Guidelines, hence the fire storage (A) could be calculated. The equalization storage (B) was calculated based on the demands in Winchester only. From the deficit calculation which deducts the existing storage presented in Table 11 from the required storage presented in Table 12, it can be seen that additional storage capacity will be required in the mid term scenario.

Scenario	Equivalent Pop'n	Fire (A)	Equalization (B)	Emergency (C)	Total Required Storage	Surplus/ (Deficit)
	No. ppl	m³	m ³	m³	m ³	m ³
Existing (2019)	2719	762	1023	446	2231	469
Near Term (1-5)	3228	817	1212	507	2536	164
Mid Term (5-10)	3678	865	1396	565	2826	(126)
Long Term (10-20)	4428	959	1653	653	3264	(564)
Build-out (20+)	5590	1425	1837	816	4078	(1378)

Table 12: Estimated Water Storage Requirements (Winchester)

For this Study the preferred serving option is a second at-grade storage tank at the Winchester Reservoir site with the same operating levels as the existing at-grade tank. The existing site allocated space for future reservoir addition. A Schedule B Class EA will be required to determine the preferred water storage option and configuration. Based on preliminary calculations and assuming an equivalent tank height to the existing Winchester at-grade storage tank, a 19 m tank diameter would provide an additional storage volume of approximately 1,400 m³, which would satisfy the anticipated build-out storage requirement. Although the previously presented model results were based on the existing booster pump at the reservoir to provide a similar comparison across scenarios, it is expected that the booster pump would be upgraded in conjunction with the new storage tank. This upgrade would increase the pumping capacity from the reservoir to the elevated tank, and could improve fire flows throughout Winchester.

The equivalent populations in Chesterville were taken as the actual populations assuming a 3.5% average annual growth rate up to the long term scenario. The build-out population was assumed to be unchanged from the long term population. There are no high water users in Chesterville. The total equivalent populations as presented in the table were used to interpolate the required fire flows and durations from Table 8-1 of the MECP Design Guidelines, hence the fire storage (A) could be calculated. The equalization storage (B) was calculated based on the demands in Chesterville only. From the deficit calculation which deducts the existing

Page 13 of 37

storage presented in Table 11 from the required storage presented in Table 13, it can be seen that additional storage capacity will be required in the near term scenario.

Scenario	Equivalent Pop'n	Fire (A)	Equalization (B)	Emergency (C)	Total Required Storage	Surplus/ (Deficit)
	No. ppl	m³	m ³	m³	m³	m ³
Existing (2019)	1853	650	182	208	1040	56
Near Term (1-5)	2147	700	233	233	1167	(70)
Mid Term (5-10)	2440	732	285	254	1270	(174)
Long Term (10-20)	3027	795	388	296	1478	(382)
Build-out (20+)	3027	795	388	296	1478	(382)

Table 13: Estimated Water Storage Requirements (Chesterville)

The additional storage facility will be either a new water tower or an increased storage capacity at the Chesterville Reservoir and Pumping Station. A Schedule B Class EA will be required to determine and refine the preferred water storage option and configuration. Based on preliminary calculations, a 9.75 m tank diameter and a 6 m tank height would provide an additional storage volume of approximately 450 m³, which would satisfy the anticipated build-out storage requirement.

Page 14 of 37

SUMMARY OF WATER DISTRIBUTION SYSTEM REVIEW

A summary of the results from the above model simulations and water storage tank capacity reviews is provided in Table 14.

Table 14:	Conceptual-Level Upgrades	to Water System based on V	Water Distribution System Review
-----------	---------------------------	----------------------------	----------------------------------

	UTION SYSTEM ASSESSMENT CONCLUSIONS	Projected	Municipal Class Environmental
Туре	Description	Timeline	Requirements
Watermain Extension Loop	300 mm diameter watermain connection between Main St. West and Fred St, through the future Wellings of Winchester development.	0 to 5 years	Schedule B – Acquire property to establish new road allowance
Watermain Upgrade	300 mm diameter watermain upgrade on St. Lawrence Street between the Winchester Reservoir and Pumping Station and Gordon Street (current extent of 300 mm diameter watermain from the Winchester elevated tank).	5 to 10 years (to accompany storage and pump upgrade)	Schedule A+ – Notify residences of upgrade in established road allowance
Watermain Network Recommendation	Upgrades to provide a 300 mm diameter trunk watermain loop in Winchester (includes Main Street West and Fred Street).	Build-out	Schedule A+ – Notify residences of upgrade in established road allowance
Water Storage & Pump Upgrades	Additional water storage and booster pump upgrade in Winchester to accommodate mid term, long term, and build-out water demand scenarios. It has been assumed that one (1) new 1,400 m ³ water storage tank will be built within the mid term.	5 to 10 years	Schedule B – Expand water storage and increase pumping capacity.
Water Storage Upgrades	Additional water storage in Chesterville to accommodate near term, mid term, long term, and build-out water demand scenarios. It has been assumed that one (1) new 450 m ³ water storage tank will be built within the near term.	0 to 5 years	Schedule B – Expand water storage and increase pumping capacity.

Page 15 of 37

SANITARY SYSTEM - FLOW PROJECTIONS AND SERVICING REVIEW

The current sanitary sewer system was simulated the Township existing SewerCAD® model under existing to 5 year, 5 to 10 year, 10 to 20 year and Build-out 20+ year sewage flow demand conditions, to determine if capacity upgrades of the existing sewers and other related infrastructure are required.

SANITARY SYSTEM – FLOW PROJECTIONS

The table below summarizes the design parameters used to calculate the sanitary sewer flow demands for the projected future developments and phasing contained in Attachment 1. Design parameters are in accordance with recommendations contained in the MECP Sewer Design Guidelines and City of Ottawa Sewer Design Guidelines.

RESIDENTIAL:						
Average Flow	350 L/cap/day					
Peaking Factor (minimum 2, maximum of 4)	$1 + \frac{14}{4 + \sqrt{\frac{Population}{1000}}}$					
INDUSTRIAL, COMMERCIAL AND INSTITUT	IONAL (ICI):					
Average Flow	28,000 L/ha/day					
Peaking Factor	1.4					
INFILTRATION:						
Peak Extraneous Flow (Collection System)	0.28 L/ha/s					
Extraneous Flow (Treatment System)	90 L/cap/day					

Table 15: Sanitary System Design Parameters

Based on the above table, the following sanitary sewer flows were determined for each projected future development:

Page 16 of 37

Development	Type / Magnitude of	Peak Residential Flow	Peak ICI Flow	Extraneous Flow	Cumulative Total Flow				
	Development	L/s	L/s	L/s	L/s				
TIMING – EXISTING TO 5 YEARS:									
5 – Main St. South Side	Commercial – 0.42 ha	-	0.19	0.12	0.31				
6 – Main St. North Side	Commercial – 0.20 ha	0.33	0.25	0.15	0.73				
10 – Dawley Dr.	Commercial – 0.81 ha	-	0.37	0.23	0.60				
11A – Wellings PH 1 - 2	Residential – 150 units	3.24	-	1.89	5.13				
11A – Wellings PH 1 - 2	Commercial – 2.28 ha	1.03	-	0.64	1.67				
12 – Main St. South Side	Commercial – 0.77 ha	-	0.35	0.22	0.57				
13 – Main St. South Side	Residential Infill – 15 units	0.62	-	0.67	1.29				
14 – Winfields Subdivision	Residential – 9 units	0.37	-	0.13	0.51				
18 – New Dundas Manor	Commercial – 1.94 ha	-	0.88	0.54	1.42				
20 – Guy Racine PH 3	Residential – 8 units	0.32	-	0.20	0.53				
21B – Queen St.	Residential – 36 units	1.46	-	0.48	1.94				
22A – Winchester Meadows	Residential – 22 units	0.89	-	0.62	1.51				
24B – High Density Apt.	Residential – 21 units	0.86	-	0.38	1.24				
28A & B – Wintonia Dr. / James St.	Residential – 12 units	0.49	-	0.29	0.78				
SUB-TO	TAL – EXISTING TO 5 YEARS	9.61	2.04	6.56	18.23				
TIMING – 5 TO 10 YEARS:									
2A – HWY #31	Commercial – 1.13 ha	-	0.51	0.32	0.83				
3 – HWYs #31 and 43	Commercial – 1.12 ha	-	0.51	0.31	0.82				
4 – HWY #31 John Deere	Commercial – 6.17 ha	-	2.80	1.73	4.53				
11B – Wellings PH 3	Residential – 86 units	1.85	-	0.81	2.66				
19 – Old Dundas Manor	Commercial – 1.19 ha	-	0.71	0.44	1.15				
22B – Winchester Meadows	Residential – 22 units	0.89	-	0.42	1.31				
24A – Woods Development	Residential – 78 units	3.16	-	0.56	3.72				
25A – Woods Development	Residential – 19 units	0.78	-	0.77	1.55				
29A – St. Lawrence St.	Residential – 15 units	0.62	-	0.48	1.10				
5	SUB-TOTAL – 5 TO 10 YEARS	7.30	4.53	5.84	17.67				

Table 16: Projected Sanitary Sewer Flows

Page 17 of 37

TIMING – 10 TO 20 YEARS:							
A – Existing Not Connected	Residential/Commercial – 28 units	1.13	1.44	3.28	5.85		
2B – HWY #31	Commercial – 1.22 ha	-	0.55	0.34	0.89		
7 – Motel Property	Residential – 14 units	0.57	-	0.52	1.09		
8 – Country Kitchen	Residential – 7 units	0.29	-	0.24	0.53		
9A – Main St. North Side	Commercial – 5.07 ha	-	2.30	1.42	3.72		
11C – Wellings PH 4 to 5	Residential – 264 units	5.64	-	2.42	8.06		
16 – Main St. South Side	Commercial – 0.74 ha	-	0.34	0.21	0.54		
21A – Seniors Complex	Residential – 54 residents	0.88	-	0.24	1.12		
25B – Fred St.	Residential – 36 units	1.46	-	0.69	2.15		
29B – Esper Lane	Residential – 51 units	2.07	-	0.93	3.00		
30 – St. Lawrence St.	Commercial – 4.56 ha	-	2.07	1.28	3.35		
31 – St. Lawrence St.	Commercial – 0.41 ha	-	0.19	0.11	0.30		
S	UB-TOTAL – 10 TO 20 YEARS	12.04	6.89	11.68	30.60		
TIMING – BUILD-OUT 20+ YE	EARS:						
9B – Main St. North Side	Commercial – 5.53 ha	-	2.51	1.55	4.06		
15 – Winfields PH 2	Residential – 4.31 ha	2.46	-	1.21	3.67		
23 – Main St. East	Residential – 9.80 ha	5.59	-	2.74	8.33		
26 – Anne St.	Residential – 3.36 ha	1.91	-	0.94	2.85		
27 – St. Lawrence St.	Residential – 3.09 ha	1.77	-	0.87	2.64		
SUB-TOTAL - 10 TO 20 YEARS 11.73 2.51 7.31 18.91							

SEWAGE PUMPING STATIONS – EXISTING SUMMARY

There are three sub-area Sewage Pumping Stations (SPS) within the Village of Winchester that pump wastewater from low lying service areas into gravity sewers located downstream at higher elevations. These gravity sewers convey the flows to either an additional sub-area pumping station or to the Ottawa Street SPS (the main SPS). Figure 1 illustrates the location of each station. The following section provides a general description of each of the sub-area pumping stations followed by a summary table listing the existing capacity at each SPS.

St. Lawrence Street Sanitary Pumping Station

The St. Lawrence Street SPS is located at 583 A St. Lawrence Street and receives wastewater from upstream gravity sewers located south of Fred Street. The C of A for the St. Lawrence Street SPS was not available; however, based on the pump curve, the PS is equipped with 3 hp pump(s) each with a best efficiency point of 19.8 L/s at 6.46 m Total Dynamic Head (TDH). The pumping rate is confirmed by the flows from a previous

Page 18 of 37

OCWA draw down test (21.2 L/s). The PS is equipped with a mechanical bar screen to protect pumps from large debris. The wet well is also equipped with floats that are used to start and stop the pumps depending on the level of raw sewage within the wet well; an alarm is also triggered at a high level setpoint. Wastewater is pumped via a 150 mm diameter forcemain that outlets near the intersection of Fred Street and St. Lawrence Street to upstream gravity collection system.

Bailey Avenue Sanitary Pumping Station

The Bailey Avenue SPS is located at 586 Main Street and receives wastewater from upstream gravity sewers, including flows pumped from the Main Street West PS. According to the ECA, the Bailey Avenue SPS is equipped with two submersible pumps and has a firm pumping capacity of 31.4 L/s at a TDH of 25 m. The pumping rate is confirmed by the flows from a previous OCWA draw down test (29.2 L/s). This PS is also equipped with a mechanical bar screen to protect pumps from large debris. Floats have been installed in the wet well to control starting and stopping of the pumps depending on the level of wastewater within the wet well; an alarm is also triggered at a high level setpoint. Wastewater is pumped via a 150 mm diameter forcemain outlets near the intersection of Main Street and Louise Street to upstream gravity collection system.

Main Street West Sanitary Pumping Station

The Main Street SPS is located on the south side of Main Street, approximately 500 m east of County Road No. 31, and receives wastewater from various properties in the west service area. According to current ECA the Main Street West SPS is equipped with two submersible pumps and has a firm pumping capacity of 6 L/s at a TDH of 13 m, however, OCWA advised the duplex pump arrange includes a larger 6 L/s pump and smaller 3.5 L/s pump. OCWA advised that a January 2020 draw down test yielded an operating pump rate of 4.5 L/s. Prior to installation of the 6 L/s pump, the Township has reported that the pump impellers were recently replaced to address on-going clogging issues due to settling of debris and rags within the wet well. The wet well has a diameter of 2.44 m and the inlet is equipped with a trash basket for removal of debris. An ultrasonic transducer and backup floats are provided for pump control and alarms. Wastewater is pumped via a 100 mm diameter 350 m long forcemain to an upstream maintenance hole along Main Street where it is conveyed to the Bailey Avenue SPS for further pumping.

Ottawa Street Sanitary Pumping Station

The main sewage pumping station (Ottawa Street PS) is located at 475 Ottawa Street near the intersection of Dufferin Street and Ottawa Street. The pumping station receives raw wastewater from the entire collection system and pumps it via a 1,300 m long 350 mm diameter forcemain to the inlet structure at the sewage treatment lagoon. According to the current ECA, the pumping station is equipped with three sewage pumps rated at 90 L/s each; however, based on a previous assessment completed by Stantec Consulting Limited in 2006, the actual pump capacities may be somewhat less (72 L/s). Nevertheless, it is assumed that two pumps operated simultaneously can provide a flow of at least 90 L/s, and therefore, a firm capacity of 90 L/s is used for this Study. The station is also equipped with a standby generator located within a separate building that is reportedly able to provide sufficient power to run two pumps simultaneously. According to the ECA, the emergency standby diesel generator is rated at 50 kW; however, from the previous assessment (Stantec, 2006), the nameplate reportedly rates the equipment at 77 kW.

The PS is equipped with a manually cleaned bar screen with bars spaced at 6 cm. The wet well is equipped with ultrasonic transducer for level monitoring and control. A magnetic flowmeter is used to measure the flowrate and volume of wastewater discharged to the lagoon. A summary of the pumping system equipment as presented in the Winchester Operations Manual is provided in Table 4.1.

Page 19 of 37

Component	Size/Capacity ⁽¹⁾				
Pumps	Number:	3			
	Capacity:	70 L/s			
	Туре:	Wemco Hydrostal Pump			
	Model:	E5K-1-E2M-			
	TDH:	15.5 m			
	Speed:	1750 RPM			
Motors	Number:	3			
	Size:	25 HP			
	Туре:	Hawker Pump Motor – L284T6			
	Electrical	575 V, 23.2 A, 60 Hz			
Diesel-generator	Capacity:	50 kW (based on C of A)			
Notes: 1. Information details as reported in Winchester Operations Manual					

Table 17: Ottawa St. Sewage Pumping Station Equipment and Capacity

The foregoing description of each existing SPS is summarized in the following table.

Table 18: Summary of Existing Sewage Pumping Stations

Pumping Station	ECA No.	Pump Operation ⁽¹⁾	TDH (m) ⁽¹⁾	Rated Capacity (L/s) ⁽¹⁾	Operational (L/s)
Main St. West SPS	9743-B9ALZN (2019)	Two submersible pumps - duty/standby	13	6 ⁽²⁾	4.5 ⁽²⁾
Bailey Ave. SPS	4037-6CAMCT (2005)	Two submersible pumps - duty/standby	25	31.4	29.2
St. Lawrence St. SPS		Two submersible pumps - duty/standby	6.46	19.8	21.2
Ottawa St. SPS	5312-88TK5R (2010)	Three dry pit sewage pumps	-	90	72 (single pump)

⁽¹⁾ According to the referenced ECAs.

(2) Rated capacity according to current ECA; OCWA staff advised there is a larger (6 L/s) and smaller (3.5 L/s) pumps installed. January 2020 pump test estimated 4.5 L/s pumping rate.

SANITARY SEWER SYSTEM – CAPACITY REVIEW

The Township's current SewerCAD® model previously prepared and updated by JLR (refer to Township of North Dundas – Winchester Wastewater Capacity Assessment, June 14, 2019) was used to assess the

Page 20 of 37

capacity of the sanitary sewer system under the development scenarios, incorporating the projected flows from Table 15. For this review, the following assumptions/exclusions were made:

- The existing sanitary sewer design model previously developed by JLR was updated with new development scenarios identified by the Township;
- An increase in the size of the sewer was assumed to be needed if the flow estimated by the model exceeded the theoretical full flowing capacity of the existing sewer;
- New development areas remain tributary to the nearest availability sanitary sewer; and
- Pipe sizing for sewer replacements used for the conceptual-level OPC assumed that the existing pipe slope is maintained, except for Main Street West sewer upgrades that are described in Options 3A and 3B below.

WASTEWATER COLLECTION SYSTEM – CAPACITY REVIEW

A review the wastewater collection system capacity that included gravity sewers and pumping stations was completed to compare the existing capacities to the demands estimated by the sanitary sewer model and projected sanitary sewer flows from Table 16. Based on the review, it is anticipated that certain gravity sewer sections, namely along Main Street West and all four (4) SPS will require an upgrade and/or expansion to meet the future build-out flow demands. Anticipated gravity sewer upgrades are triggered when the projected peak flow exceed the sewer's theoretical conveyance capacity. Similarly, pumping station upgrades are triggered when projected peak flows exceed the rated pumping capacity. Model results are contained in Attachment No. 3. A list of wastewater system upgrades applied in the model are summarized in the following section.

WASTEWATER SERVICING OPTIONS

Based on the anticipated growth areas and existing servicing constraints, particularly in the west end, wastewater servicing options were developed to assess future pumping station, forcemain and sewer upgrades, summarized as follows (refer to Figures 5 to 9):

Option 1 – Upgrade Existing Wastewater System

Maintains the existing configuration of the wastewater system by upgrading sewers and SPS in their current location.

Option 2A – Upgrade Main St. West SPS and extend forcemain along Main Street East of Gladstone Street

Similar to Option 1, however, the proposed capacity upgrades to the Main St. West SPS include extending the forcemain along Main Street to outlet east of Gladstone Street, the same forcemain outlet location as the Bailey Avenue SPS. Gravity sewers upgrades are required downstream of the extended Main St. Option 2A allows wastewater collected at the Main St. West SPS to bypass the existing Bailey Avenue SPS and mitigate future capacity upgrades required at this station by Option 1.

Option 2B – Upgrade Main St. West SPS and reroute forcemain to Clarence Street

Similar to Option 2A, however, the Main St. West SPS forcemain would be extended along Main Street, through the Community Centre property, the Christie Lane easement and along Clarence Street to Louise Street (refer to Figure 5). The rerouted forcemain will require upgrades to the existing Clarence St. sanitary sewers. Option 2B allows wastewater collected at the Main St. West SPS to bypass the existing Bailey Avenue SPS and mitigate future capacity upgrades required at this station by Option 1.

Page 21 of 37

Option 3A – Relocated Main St. West SPS and Decommission Bailey Avenue SPS (Main Street Outlet)

The intent of this option is to simplify wastewater operations in the west end by maintaining a single SPS instead of two SPS (i.e., Main St. West and Bailey Ave. SPS). Similar to Option 2A, however, the Main St. West SPS would be relocated approximately 300 m east along Main Street west. The relocated SPS would allow gravity sewers to be extended from the east and west along Main Street to centralize pumping from a single pumping station and allow future decommissioning of the Bailey Avenue SPS. Gravity sewers would be extended the same distance to convey wastewater to the new SPS location. Also, the wet well depth would be increased to allow future gravity sewers to be extend at a deeper elevation along Main Street from Bailey Avenue SPS to this new SPS. Timing of the future gravity sewers could be coordinated to align with anticipate condition/equipment replacement at the Bailey Avenue SPS.

Option 3B – Relocated Main St. West SPS and Decommission Bailey Avenue SPS (Clearance Street Outlet)

Similar to Option 3A, however, the Main St. West SPS forcemain would follow the same route as described in Option 2B and outlet at the intersection of Clearance Street and Louise Street (refer to Figure 5).

Each potential wastewater servicing option was simulated in the existing SewerCAD® model. For each option a summary table lists expected sanitary sewer upgrade and highlights in orange the anticipated timing of upgrades:

Option 1: Maintain Existing Configuration and Upgrade Collection System

Gravity sewer upgrades are anticipated in four areas throughout the system at various times and consist of upgrading the existing pipe diameter at the current location (refer to Figures 5 to 9 for sewer upgrade locations).

Street	Existing Project Peak Flow (L/s)				L/s)		
	Dia. (mm)	Length (m)	Theoretical Conveyance Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build-out
Bailey Ave. MH 37 - 41	200	24	20	28	36	50	53
Main St. W MH 40 - 37	200	177	21 to 26	19 to 20	27 to 28	41 to 42	44 to 45
Main St. W MH 28 - 26	250	155	35 to 39	33	41 to 42	55 to 56	62
Main St. W MH 437 – 434	250	200	26 to 30	15 to 16	23	37	37 to 40
Easement b/w May St. and York St.	250	51	22	17	18	24	29

For the 10 to 20 year and build-out sewer upgrades anticipated along the Easement between May Street and York Street, additional field investigation is warranted to confirm the sewer invert elevations along with future review of the projected peak wastewater flows to confirm peak sewage flow in this sewer section. At this location the expected flow exceeds the pipes theoretical conveyance capacity, however, the hydraulic grade level (HGL or water level in the pipe), is 1 cm below the sewer obvert elevation (top of pipe). Therefore, it is

Page 22 of 37

expected the future peak flow will remain within the sewer and may not warrant a sewer upgrade. Refer to Figure 5 for sewer upgrade locations.

Pumping station upgrades are expected at all locations under build-out conditions with timing of upgrades highlighted in orange.

Pumping	Rated	Р	rojected Pea		Peak Flow	
Station	Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build- out	Capacity Surplus/(Deficit) (L/s) at Build-out
Main Street	6	19	27	41	44	(38)
Bailey Ave.	31.4	32	41	55	62	(31)
St. Lawrence	21	11	12	18	24	(3)
Ottawa Street	90	72	87	109	127	(37)

Main St. West SPS and Baily Avenue SPS will require significant upgrades to accommodate the projected wastewater flow. It is anticipated that new, enlarged pumping stations and wet wells will be required at both locations along with upgrade forcemains. Bailey Avenue SPS upgrades will require additional investigation to assess the feasibility to double the current rated pumping capacity on the existing constrained site in close proximity to neighbouring residential development. It is recommended that St. Lawrence Street SPS upgrades be reassessed in the 10 to 20 year time frame to confirm that the projected peak flow warrant upgrades as the rated capacity is 3 L/s of the projected build-out peak flow rate. Similarly, Ottawa SPS upgrades are anticipated in the 10 to 20 year time frame and are expected to include upgrade pumping and electrical equipment to accommodate the increased peak flow, based on a capacity deficit of 37 L/s compared to the 90 L/s rated capacity.

Option 2A or 2B: Upgrade Main St. West SPS and bypass Bailey Avenue SPS

Option 2A reduces the number of gravity sewer upgrades required in Option 1 by extending the upgraded Main St. West SPS forcemain approximately 1,150 m along Main Street, east of Gladstone Street, which bypasses the Bailey Avenue SPS. The proposed outlet Maintenance Hole (MH) would be the same as the current Bailey Avenue SPS forcemain outlet. The timing of associated gravity sewer upgrades of this option are summarized as follows:

Page 23 of 37

Table 21: Option 2A - Gravity Sewer Upgrades Main St. West SPS outlet toMain Street, east of Gladstone Street

Street	Existing			Project Peak Flow (L/s)				
	Dia. (mm)	Length (m)	Theoretical Conveyance Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build-out	
Main St. W MH 28 - 26	250	155	35 to 39	33	41 to 42	55 to 56	62	
Main St. W MH 437 - 434	250	200	26 to 30	15 to 16	23	37	37 to 40	
Easement b/w May St. and York St.	250	51	22	17	18	24	29	

Option 2B has a comparable number of gravity sewer upgrades, but requires an approximately 1,500 m long forcemain from Main St. West SPS to the intersection of Clarence Street and Louise Street. In addition, the new forcemain alignment would travel through the existing community centre property and along the walking path easement between residential units along Christine Lane (refer to Figure 5). It is recommended that further investigation be completed to assess the viability of the proposed forcemain route, particularly spatial constraints in the easement that already contains a buried sanitary sewer.

Table 22: Option 2B - Gravity Sewer Upgrades Main Street West SPS outlet to Clarence Street and Louise Street

Street	Existing			Project Peak Flow (L/s)				
	Dia. (mm)	Length (m)	Theoretical Conveyance Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build-out	
Clarence St. MH 105 - 102	300	207	29 to 83	24	32	46	49	
Main St. W MH 437 - 434	250	200	26 to 30	15 to 16	23	37	37 to 40	
Easement b/w May St. and York St.	250	51	22	17	18	24	29	

Pumping station upgrades for Options 2A and 2B are the same, with Bailey Street SPS not requiring future capacity upgrades. This is one less pumping station upgrade than outlined for Option 1. Bailey Avenue SPS's maximum rated capacity would be reduced and future end of service life equipment replacements could be designed to meet the lower capacity requirements.

Page 24 of 37

Pumping	Rated	Р	Peak Flow			
Station	Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build- out	Capacity Surplus/(Deficit) (L/s)
Main St.	6	19	27	41	44	(38)
Bailey Ave.	31.4	14	15	15	19	12
St. Lawrence	21	11	12	18	24	(3)
Ottawa St.	90	72	87	109	127	(37)

Table 23: Options 2A and 2B – Pumping Station Upgrades Summary

Options 3A or 3B: Upgrade Main Street SPS and Decommission Bailey Avenue SPS

Option 3A is similar to Option 2A, but with new deeper gravity sewers installed along Main Street West between Bailey Avenue SPS and the new upgrade Main Street SPS. Installation of the gravity sewers would centralize wastewater collection at one SPS in the west end of town and allow Bailey Avenue SPS to be decommissioned in the future. New and regraded sanitary sewers would consist of extending the existing 300 mm dia. Main Street West sewers 286 m to a new Main St. W SPS location along with regrading and deepening approximately 260 m of sewers located between Bailey Ave. SPS and the relocated Main St. West SPS (refer to Figure 5).

Timing of the Bailey Avenue SPS decommission could be coordinated with end of service life of the building and equipment. However, further geotechnical investigation is recommended to review the feasibility of Option 3A based on soil type, bedrock excavation and groundwater. It is anticipated that 260 m of the new gravity sewers would be constructed approximately 6 to 7 m below grade, which is at or near the limits of conventional open trench installation. The feasibility of excavation, engineered trench shoring requirements, bedrock removal and/or groundwater constraints should be assessed to confirm feasibility and refine opinions of probable construction costs.

Street	Existing			Project Peak Flow (L/s)				
	Dia. (mm)	Length (m)	Theoretical Conveyance Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build-out	
Main St. W MH 28 - 26	250	155	35 to 39	33	41 to 42	55 to 56	62	
Main St. W MH 437 – 434	250	200	26 to 30	15 to 16	23	37	37 to 40	
Easement b/w May St. and York St.	250	51	22	17	18	24	29	
		New/Re	graded Sewer U	pgrades				
Extend Main St. W. to Relocated SPS	300	286	63	19	27	41	44	
Main St. W. from Bailey Ave. to Relocated SPS	250	260	39	14	15	15	19	

Table 24: Option 3A - Gravity Sewer Upgrades Main Street West SPS outletto Main Street, east of Gladstone Street

Page 25 of 37

Options 3B gravity sewer upgrades are similar to Option 3A, however, the Main Street SPS forcemain outlet is located at the Clarence Street and Louise Street intersection, as described in Option 2B.

Street	Existing			Project Peak Flow (L/s)			
	Dia. (mm)	Length (m)	Theoretical Conveyance Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build-out
Clarence St. MH 105 - 102	300	207	29 to 83	24	32	46	49
Main St. W MH 437 – 434	250	200	26 to 30	15 to 16	23	37	37 to 40
Easement b/w May St. and York St.	250	51	22	17	18	24	29
		New/Re	graded Sewer	Upgrades			
Extend Main St. W. to Relocated SPS	300	286	63	19	27	41	44
Main St. W. from Bailey Ave. to Relocated SPS	250	260	39	14	15	15	19

Table 25: Option 3B - Gravity Sewer Upgrades Main Street West SPS outlet to Clarence Street and Louise Street

Options 3A and 3B pumping station upgrades are the same as Options 2A and 2B, however the Main Street SPS needs to be relocated and requires a deeper wet well to drain the new gravity sewers. It is proposed to relocate the SPS approximately 286 m east to mitigate the wet well depth and length of deep gravity sewers to allow Bailey Avenue SPS to be decommissioned in the future. Land acquisition for the new SPS needs to be reviewed as part of this option along with the additional geotechnical considerations summarized under Option 3A gravity sewers to confirm construction feasibility.

Pumping	Rated	P	Peak Flow			
Station	Capacity (L/s)	0-5 years	5-10 years	10-20 years	Build- out	Capacity Surplus/(Deficit) (L/s)
Main St.	6	19	27	55	62	(56)
Bailey Ave.	31.4	14	15	N/A	N/A	N/A
St. Lawrence	21	11	12	18	24	(3)
Ottawa St.	90	72	87	109	127	(37)

SEWAGE TREATMENT SYSTEM – CAPACITY REVIEW

In early 2019, JLR, along with the Township of North Dundas (Township) and Ontario Clean Water Agency (OCWA) completed a Municipal Class Environmental Assessment (Class EA) associated with upgrades to the Winchester Sewage Treatment System (STS). The STS consists of a seasonally discharged lagoon-based

Page 26 of 37

system (lagoon), including three primary facultative treatment cells operated in parallel (Cells 1, 2 and 3), one polishing cell (Cell No. 4), and one post-aeration cell (Cell No. 5). The lagoon treatment system has a C of A rated capacity of 2,220 m³/day (C of A No. 5312-88TK5R).

At the time of the Class EA, population projections were reviewed with the Township and it was determined that the population within Winchester was anticipated to increase by approximately 948 people by 2038. Based on a population of 2,394 and an average day flow of 1,381 m³/d, the estimated per capita flow at the time of the report was approximately 577 L/cap/day inclusive of inflow and infiltration (I&I). The 20-year design average day flow (ADF) for the Winchester STS assumed that the ratio of wastewater flow from future residential and commercial developments would remain similar to the proportion of residential and commercial flows that were previously generated. The Class EA recommended a specialized treatment study and upgrades to overcome existing operational constraints of the wastewater treatment system's rated capacity in the short term 0-5 year period.

As part of the current servicing study, population projections were re-developed based on new information available from the Township, and the average wastewater flows for various phasing (0-5 years, 5-10 years, 20 years, and 20+ years) were determined. The following table identifies the wastewater ADF for each phase, which includes residential (350 L/cap/day), commercial (28,000 L/ha/day) and a typical I&I flow (90 L/cap/day).

Phasing	Projected Population Increase (Persons)	Projected increase ADF (m ³ /d)	Existing ADF (m³/d)	Projected Wastewater ADF ¹ (m ³ /d)	Rated Capacity (m³/d) ²	Treatment Capacity Surplus/ (Deficit) (m ³ /d)
0-5 Years	539	347		1,728		492
5-10 Years	989	824	1,381	2,205	2,220	15
10-20 Years	1740	1,580	1,301	2,961	2,220	(741)
20+ Years	2464	1,898		3,279		(1059)

Table 27: Sewage Treatment System Future Capacity Comparison

1. The projected wastewater ADF is estimated based on an assumed current average day flow of 1,381 m³/d which is an average of the annual average day wastewater flow from 2012-2016.

2. The Winchester Sewage Treatment System Class EA (JLR, 2019) recommended a specialized treatment study to overcome existing operational constraints of the wastewater treatment system's rated capacity in the short term 0-5 year period.

It is noted that based on the higher projected population increase for the servicing study compared to the Class EA, the above suggests that the capacity of the lagoon could be exceeded during the 10-20 Year period if the projected development and connections are realized within this timeframe. As noted elsewhere in this study, it is recommended that the Township review the actual growth and wastewater flows generated on a periodic basis and re-evaluate the need and timing for capacity increases to the STS. Generally, capacity upgrades are triggered when a treatment facility reaches approximately 80% of the current functional or production capacity. This early identification allows time to accommodate the required planning and design between the anticipated need and the implementation of the upgrades. It is recommended that any short term lagoon upgrades necessary to overcome existing operational constraints be coordinated with expected long-term capacity upgrades to accommodate the growth projections.

At a high level potential future options overcome existing treatment constraints and to increase lagoon treatment capacity consist of adding end of pipe treatment such as a Moving Bed Bioreactor (MBBR) or Submerged Attached Growth Reactor (SAGR) systems and/or increase existing the lagoon area. OCWA

Page 27 of 37

advised that deepening the lagoon to increase storage capacity likely is not a feasible option as bedrock was encountered during the original lagoon construction.

It is important to note that the results of this study are *highly* dependent on the extent and rate of growth that the Township is projecting and also on the assumptions used in determining resulting future wastewater flows associated with this growth. As the Township receives more site specific information, it is possible that the projected wastewater flows could be refined and timing for implementation of the required infrastructure upgrades/expansion to support the future growth could be extended further out.

Page 28 of 37

SUMMARY OF SANITARY SYSTEM REVIEW

A summary of the conclusions resulting from the above sanitary sewer model simulations, and SPS capacity review are provided in Table 28.

	SANITARY SYSTEM UPGRADES			Municipal Class Environmental	
Туре	Description	Timeline	Included in Study?	Requirements	
Sewage Pumping Station Upgrades	Options 1, 2A and 2B – Main St. SPS, increase capacity (current ECA capacity 6 L/s) to accommodate the build-out demand scenario (44 L/s from 6 L/s). It is assumed that a forcemain upgrade along with a new pumping station and wet well are required.	0 - 5 years	Yes	Schedule B – Increase sewage pumping station capacity that requires new building/wet well	
	Option 1 – Bailey Ave. SPS, increase capacity (current ECA capacity 31 L/s) to accommodate the build-out demand scenario (62 L/s from 31 L/s). It is assumed that a forcemain upgrade along with a new pumping station and wet well are required.	0 - 5 years	Yes	Schedule B – Increase sewage pumping station capacity that requires new building/wet well	
	Options 1 to 3 – Ottawa St. SPS, increase capacity (current ECA capacity 90 L/s) to accommodate the build-out demand scenario (127 L/s from 90 L/s). It is assumed equipment upgrades can be accommodated in the existing building footprint and forcemain.	10 to 20 Years	Yes	Schedule A+ – Notify residences of upgrade contained in existing building and wet well	
	Options 2A and 2B – Bailey Ave. SPS building and equipment replacement at end of service life	0 - 5 years	Yes	Schedule A – Equipment replacement in existing facility	
	Options 3A and 3B – New Main St. SPS rated for 62 L/s. New forcemain to either Main St. W. or Clarence St. and decommission Bailey Ave. SPS. Likely requires land acquisition for new Main St. SPS location.	0 - 5 years	Yes	Schedule B – Increase sewage pumping station capacity that requires new building/wet well	
Sanitary Sewer Capacity Upgrades	Option 1 – Bailey Ave: Upgrade 24 m section of sanitary sewer with 300 mm dia. sewer	0 - 5 years	Yes	Schedule A+ – Notify residences of upgrade in established road allowance	
	Option 1 – Main St. W: Upgrade 177 m section of sanitary sewer with 300 mm dia. sewer	5 to 10 Years	Yes		

Table 28: Conceptual-Level Upgrades to Sanitary System

Page 29 of 37

	Options 1, 2A and 3A – Main St. W, Bailey Ave. SPS outlet sewers: Upgrade 155 m section of sanitary sewer with 300 mm dia. sewer	5 to 10 Years	Yes	Schedule A+ – Notify residences of upgrade in established road allowance
	Options 1 to 3 – Main St. W. upstream of Main St. SPS: Upgrade 200 m section of sanitary sewer with 300 mm dia. sewer	10 to 20 Years	Yes	Schedule A+ – Notify residences of upgrade in established road allowance
	Options 1 to 3 – Easement: Upgrade 51 m section of sanitary sewer with 300 mm dia. Sewer. To be confirmed in future based on field survey and actual future wastewater flows	10 to 20 Years	Yes	Schedule A+ – Notify residences of upgrade in established road allowance
	Options 2B and 3B – Clarence St.: Upgrade 207 m section of sanitary sewer with 450 mm dia. sewer	5 to 10 Years	Yes	Schedule A+ – Notify residences of upgrade in established road allowance
	Options 3A and 3B – New 286 m of regraded 300 mm dia. sanitary sewers extension along Main St. W.	0 - 5 years	Yes	Schedule A+ – Notify residences of upgrade in established road allowance
	Options 3A and 3B – New 260 m of regraded deep (~7m) 250 mm dia. sanitary from Bailey Ave. SPS to relocated Main St. SPS.	10 to 20 years* Coordinate with Bailey Ave. SPS equipment replacement	Yes	Schedule A+ – Notify residences of upgrade in established road allowance
	A specialized treatment upgrades to overcome existing operational constraints of the wastewater treatment systems to achieve the rated capacity in the short term 0-5 year period.	0 to 5 Years	Yes	Completed 2019 Schedule B
Sewage Treatment System	Increase lagoon treatment capacity by adding/expanding end of pipe treatment such as a Moving Bed Bioreactor (MBBR), or Submerged Attached Growth Reactor (SAGR) systems and/or increase the existing lagoon area. Timing and remaining treatment capacity to be periodically reviewed in the future based on receiving wastewater flow as growth occurs.	10 to 20 Years	Yes	Schedule C – Increase rated capacity of wastewater treatment system

Page 30 of 37

SUMMARY OF ASSUMPTIONS FOR PREPARING OPINIONS OF PROBABLE COST

An Opinion of Probable Cost (OPC) with a Class 'D' (Indicative Estimate) level of accuracy was developed for the conceptual-level upgrades required to service the projected future developments. The OPC was developed based on past experience on similar projects, professional judgment, and equipment costs provided by suppliers.

In preparing the OPC, the following assumptions were made:

- The estimated costs for various items are order-of-magnitude only and are based on the experience and current (2020) unit prices in the construction industry.
- All costs, including those for future years, are expressed in 2020 dollars and <u>exclude HST</u>. If these costs are to be used for long-range cash-flow projections, the implications for potential future trends of inflation and interest must be applied accordingly.
- Conceptual level of order-of-magnitude OPC may range by ± 30%. The scope of the required upgrades are to be confirmed through a Master Plan and/or Municipal Class EA, followed by preliminary and detailed design; costs will vary depending on the scope considered for implementation.
- The estimated costs do not include engineering costs.
- Estimated costs for various items were obtained from the City of Ottawa Master Spec Code List (December, 2018).
- Bedrock and groundwater levels were assumed deeper than the excavations, and therefore, no costs for rock removal, water taking and discharge have been included in the OPC.

This OPC is based on our best professional judgement and experience at the time, which may not reflect actual construction costs that are dependent on available labour, equipment, materials, market conditions or Contractor's method of pricing at the time of tendering. Where appropriate, Class Environmental Assessments should be completed to better understand the scope (cost, magnitude, timeline) of the required upgrades.

Table 29 below provides an overview of the conceptual-level upgrades considered within the OPC to service the development scenarios. Figures 5 to 9 provide an overview of the conceptual-level upgrades of the water distribution and sanitary systems as well as the location of the existing water and wastewater treatment systems.

Page 31 of 37

Table 29: Opinions of Probable Cost for Conceptual-Level Upgrades

	CONCEPTUAL LEVEL UPGRADES	Class 'D' Opinion of Probable Cost
Туре	Description	
UPGRADES 0 to 5 Ye	ars	
	Option 1 – Bailey Ave: Upgrade 24 m section of sanitary sewer with 300 mm dia. sewer	\$50,000
Sanitary Sewer Capacity Upgrades	Options 3A and 3B – New 286 m of regraded 300 mm dia. sanitary sewers extension along Main St. W.	\$450,000
	Options 1 – Main St. SPS, increase capacity (current ECA capacity 6 L/s) to accommodate the build-out demand scenario (44 L/s from 6 L/s). Upgrade anticipated to include a new forcemain, new pumping station and wet well.	\$2.5M - \$3.5M
	Option 2A – Same Main St. SPS upgrade as Option 1, but forcemain outlet extended along Main St., east of Gladstone St.	\$3.1M – \$4.1M
	Option 2B – Same Main St. SPS upgrade as Option 1, but forcemain outlet extended to intersection of Clarence St. and Louise St.	\$3.5M - \$4.5M
Sewage Pumping Station Upgrades	Option 1 – Bailey Ave. SPS, increase capacity (current ECA capacity 31 L/s) to accommodate the build-out demand scenario (62 L/s from 31 L/s). Upgrade anticipated to include a new forcemain, new pumping station and wet well.	\$3.75M - \$4.75M
	Options 2A and 2B – Bailey Ave. SPS building and equipment replacement at end of service life	\$750,000
	Options 3A – New Main St. SPS rated for 62 L/s. New forcemain outlet extended along Main St. east of Gladstone St. Decommission Bailey Ave. SPS. Likely requires land acquisition for new Main St. SPS location.	\$5M - \$6M
	Options 3B – New Main St. SPS rated for 62 L/s. New forcemain outlet extended to intersection of Clarence St. and Louise St. Decommission Bailey Ave. SPS. Likely requires land acquisition for new Main St. SPS location.	\$5.5M - \$6.5M

Page 32 of 37

Sewage Treatment System	Specialized treatment upgrades to overcome existing operational constraints of the wastewater treatment systems to achieve the rated capacity. Opportunity to coordinate upgrades with 10 to 20 year treatment capacity upgrades	\$7M
Watermain Upgrades	New 300 mm dia. watermain loop approximately 1,030 m (excluding 750 m through new development property) of 300 mm diameter watermain connection between Main St. West and Fred St.	\$750,000
Watermain Storage and Pumping Station Upgrades	Chesterville Reservoir - 450 m ³ water storage expansion and pumping station upgrade	\$1M
UPGRADES 5 to 10 Ye	ears	
	Option 1 – Main St. W: Upgrade 177 m section of sanitary sewer with 300 mm dia. sewer	\$250,000
Sanitary Sewer Capacity Upgrades	Options 1, 2A and 3A – Main St. W, Bailey Ave. SPS outlet sewers: Upgrade 155 m section of sanitary sewer with 300 mm dia. sewer	\$200,000
	Options 2B and 3B – Clarence St.: Upgrade 207 m section of sanitary sewer with 450 mm dia. sewer	\$275,000
Watermain Upgrades	St. Lawrence St. 300 mm dia. watermain upgrade between the Winchester Reservoir and Pumping Station and Gordon Street (current extent of 300 mm diameter watermain from the Winchester elevated tank). Accompanies Winchester water storage and pumping station upgrades.	\$1.5M
Water Storage and Pumping Station	Water storage expansion of 1,400 m ³ and booster pump upgrade at the Winchester Reservoir and Pumping Station.	\$2M
UPGRADES 10 to 20 Y	/ears	
	Options 1 to 3 – Main St. W. upstream of Main St. SPS: Upgrade 200 m section of sanitary sewer with 300 mm dia. sewer	\$250,000
Sanitary Sewer Capacity Upgrades	Options 1 to 3 – Easement: Upgrade 51 m section of sanitary sewer with 300 mm dia. Sewer. To be confirmed in future based on field survey and actual future wastewater flows	\$75,000

Page 33 of 37

	Options 3A and 3B – New 260 m of regraded deep (~7m) 250 mm dia. sanitary from Bailey Ave. SPS to relocated Main St. SPS.	\$600,000
Sewage Pumping Station Upgrades	Options 1 to 3 – Ottawa St. SPS, increase capacity (current ECA capacity 90 L/s) to accommodate the build-out demand scenario (127 L/s from 90 L/s). It is assumed equipment upgrades can be accommodated in the existing building footprint and forcemain.	\$750,000
Sewage Treatment System	Increase lagoon treatment capacity by adding end of pipe treatment such as a Moving Bed Bioreactor (MBBR) or Submerged Attached Growth Reactor (SAGR) systems and/or increase existing lagoon depth to increase storage volume. Timing and remaining treatment capacity to be periodically reviewed in the future based on receiving wastewater flow as growth occurs.	\$15M
UPGRADES BUILD-OU	Л	
Watermain upgrades	Main St W. upgrade watermain to 300 mm dia. from Wellings of Winchester to St. Lawrence St. Establishes a trunk watermain loop through Winchester to improve fire flow availability.	\$1.5M
	Fred St. upgrade watermain to 300 mm dia from Fred St. easement connection to St. Lawrence St. Establishes a trunk watermain loop through Winchester to improve fire flow availability.	\$500,000
TOTAL OVERALL CON	ICEPTUAL-LEVEL OPC	\$35M - \$38M

Based on review of the OPCs, it is expected that Option 2A would provide the most economical option to accommodate the projected build-out future development (refer to Figure 10). The following table provides an OPC summary associated with Option 2A.

	CONCEPTUAL LEVEL UPGRADES	Class 'D' Opinion of Probable Cost
Туре	Description	
UPGRADES 0 to 5 Yea	Irs	
Sewage Pumping	Option 2A – Same Main St. SPS upgrade as Option 1, but forcemain outlet extended along Main St., east of Gladstone St.	\$3.1M – \$4.1M
Station Upgrades	Options 2A – Bailey Ave. SPS building and equipment replacement at end of service life	\$750,000
Sewage Treatment System	Specialized treatment upgrades to overcome existing operational constraints of the wastewater treatment systems to achieve the rated capacity. Opportunity to coordinate upgrades with 10 to 20 year treatment capacity upgrades	\$7M
Watermain Upgrades	New 300 mm dia. watermain loop approximately 1030 m (excluding 750 m through new development property) of 300 mm diameter watermain connection between Main St. West and Fred St.	\$750,000
Watermain Storage and Pumping Station Upgrades	Chesterville Reservoir - 450 m ³ water storage expansion and pumping station upgrade	\$1M
UPGRADES 5 to 10 Ye	ars	
Sanitary Sewer Capacity Upgrades	Option 2A – Main St. W, Bailey Ave. SPS outlet sewers: Upgrade 155 m section of sanitary sewer with 300 mm dia. sewer	\$200,000
Watermain Upgrades	St. Lawrence St. 300 mm dia. watermain upgrade between the Winchester Reservoir and Pumping Station and Gordon Street (current extent of 300 mm diameter watermain from the Winchester elevated tank). Accompanies Winchester water storage and pumping station upgrades.	\$1.5M

Table 30: Option 2A - Opinions of Probable Cost for Conceptual-Level Upgrades

Page 35 of 37

	Fred St. upgrade watermain to 300 mm dia from Fred St. easement connection to St. Lawrence St. establishes a trunk watermain loop through Winchester to improve fire flow availability.	\$500,000
·····		
Watermain Upgrades	Main St W. upgrade watermain to 300 mm dia. from Wellings of Winchester to St. Lawrence St. establishes a trunk watermain loop through Winchester to improve fire flow availability.	\$1.5M
UPGRADES BUILD-OU	T	
Sewage Treatment System	Increase lagoon treatment capacity by adding end of pipe treatment such as a Moving Bed Bioreactor (MBBR) or Submerged Attached Growth Reactor (SAGR) systems and/or increase existing lagoon depth to increase storage volume. Timing and remaining treatment capacity to be periodically reviewed in the future based on receiving wastewater flow as growth occurs.	\$15M
Sewage Pumping Station Upgrades	Option 2A – Ottawa St. SPS, increase capacity (current ECA capacity 90 L/s) to accommodate the build-out demand scenario (127 L/s from 90 L/s). It is assumed equipment upgrades can be accommodated in the existing building footprint and forcemain.	\$750,000
Sanitary Sewer Capacity Upgrades	Option 2A – Easement: Upgrade 51 m section of sanitary sewer with 300 mm dia. Sewer. To be confirmed in future based on field survey and actual future wastewater flows	\$75,000
	Option 2A – Main St. W. upstream of Main St. SPS: Upgrade 200 m section of sanitary sewer with 300 mm dia. sewer	\$250,000
UPGRADES 10 to 20 Y	/ears	
Water Storage and Pumping Station	Water storage expansion of 1,400 m ³ and booster pump upgrade at the Winchester Reservoir and Pumping Station.	\$2M

Page 36 of 37

KEY CONSIDERATIONS FROM DESKTOP REVIEW

Based on the findings of the desktop water and wastewater servicing review, a list of recommendations and key considerations are summarized as follows:

Water Servicing

- The Lactalis water service configuration and details be reviewed for any future opportunities to refine the Township's water model to more accurately represent the site servicing at this facility.
- A Water Distribution System Master Plan be developed to evaluate and select preferred trunk water servicing routes and options. Since additional water storage is required to address a future storage deficit, a Master Plan would be beneficial in the selection of the preferred water storage configuration and location as it relates to the distribution system.

Wastewater Servicing

- The St. Lawrence Street SPS upgrades be reassessed in the 10 to 20 year time frame to confirm that the upgrades remain warranted as the projected build-out peak flow rate is within 3 L/s of the current rated capacity.
- Option 2A is expected to be the most economical option to accommodate the build-out wastewater flow from the identified future development areas.
- Under Option 1 the Bailey Avenue SPS upgrades will require additional investigation to assess the feasibility to double the current rated pumping capacity to 62 L/s on the existing constrained site and in close proximity to neighbouring residential development.
- Options 2B and 3B further investigation of the proposed forcemain route through the Christie Lane easement should be completed to assess the viability, particularly spatial constraints as the easement already contains a buried sanitary sewer.
- For the 20 year and build-out sewer upgrade anticipated along the easement between May Street and York Street additional field investigation is warranted to confirm the sewer invert elevations along with future refinement of the projected peak wastewater flows.
- Options 3A and 3B further geotechnical investigation is recommended to review the feasibility of
 excavation, engineered trench shoring requirements, potential bedrock removal and/or groundwater
 constraints and refine opinions of probable construction costs. It is anticipated that 260 m of the new
 gravity sewers would be constructed approximately 6 to 7 m below grade, which is at or near the limits
 of conventional open trench installation.
- Short term lagoon upgrades necessary to overcome existing operational constraints be coordinated with
 expected long-term capacity upgrades to accommodate the growth projections. The Township should
 continue to review the actual growth and wastewater flows generated on a periodic basis and re-evaluate
 the need and timing for capacity increases to the STS. Additional investigation is required to assess
 constraints of increasing lagoon depth, treatment requirements and increased discharge period in order
 to achieve the anticipate build-out treatment capacity.

Page 37 of 37

It is noted that the type of units expected within various residential areas and the type of commercial use expected within future commercial lands have a significant influence on the water demands and wastewater flows projected for the development scenarios. With limited information regarding the details of the intended future developments, design guideline values for the projected flows have been used to identify the various upgrades. Based on our experience, guideline values tend to be more conservative to account for unknowns when limited information is available, and therefore, there may be opportunities to refine the projected flows with further details as information becomes more available.

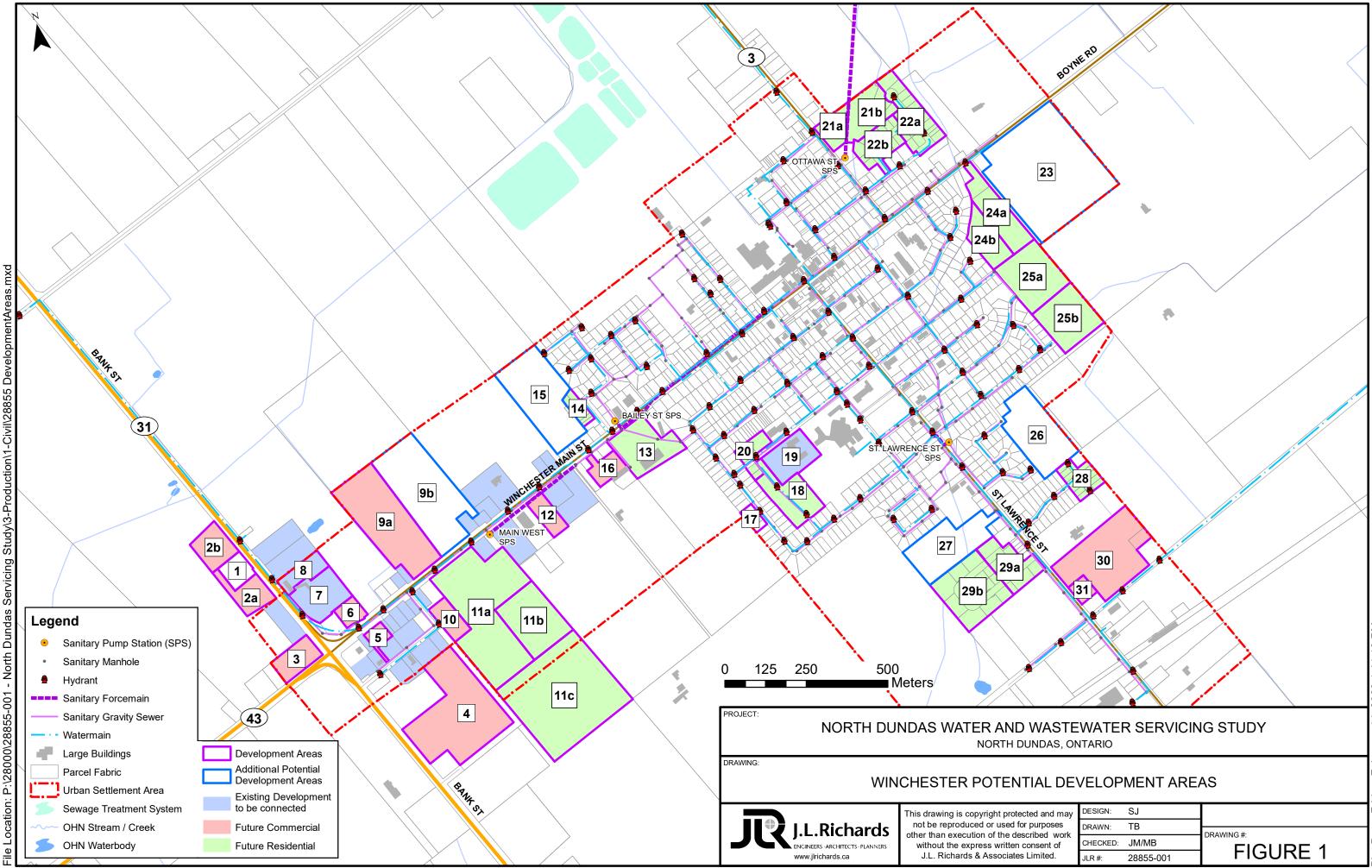
Furthermore, the upgrades identified through this review and their associated costs are largely attributed to future developments that are currently non-committed. Therefore, as these infrastructure upgrades are development driven, it would be expected that the majority of the costs to upgrade the infrastructure would be borne by the developers.

It is recommended that the Village undertake a more in-depth Master Plan for their water and wastewater systems to further define the projected future developments, the projected flows (both water and wastewater) and the resulting infrastructure upgrade requirements and the timing for those upgrades based on additional information. A more in-depth capacity assessment review of the STS could also be undertaken to determine the potential expandability of the STS based on projected demands and to assess constraints based on increase lagoon depth, treatment objectives and release rates. As noted, since additional water storage is required to address a future storage deficit, a Master Plan would be beneficial in the selection of the preferred water storage configuration and the specific location as it relates to the distribution system. A Master Plan would also assist in establishing additional capital costs and timing that could be used to ensure that any Development Charges By-law is appropriate to accommodate sustainable growth within the Township.

J.L. RICHARDS & ASSOCIATES LIMITED

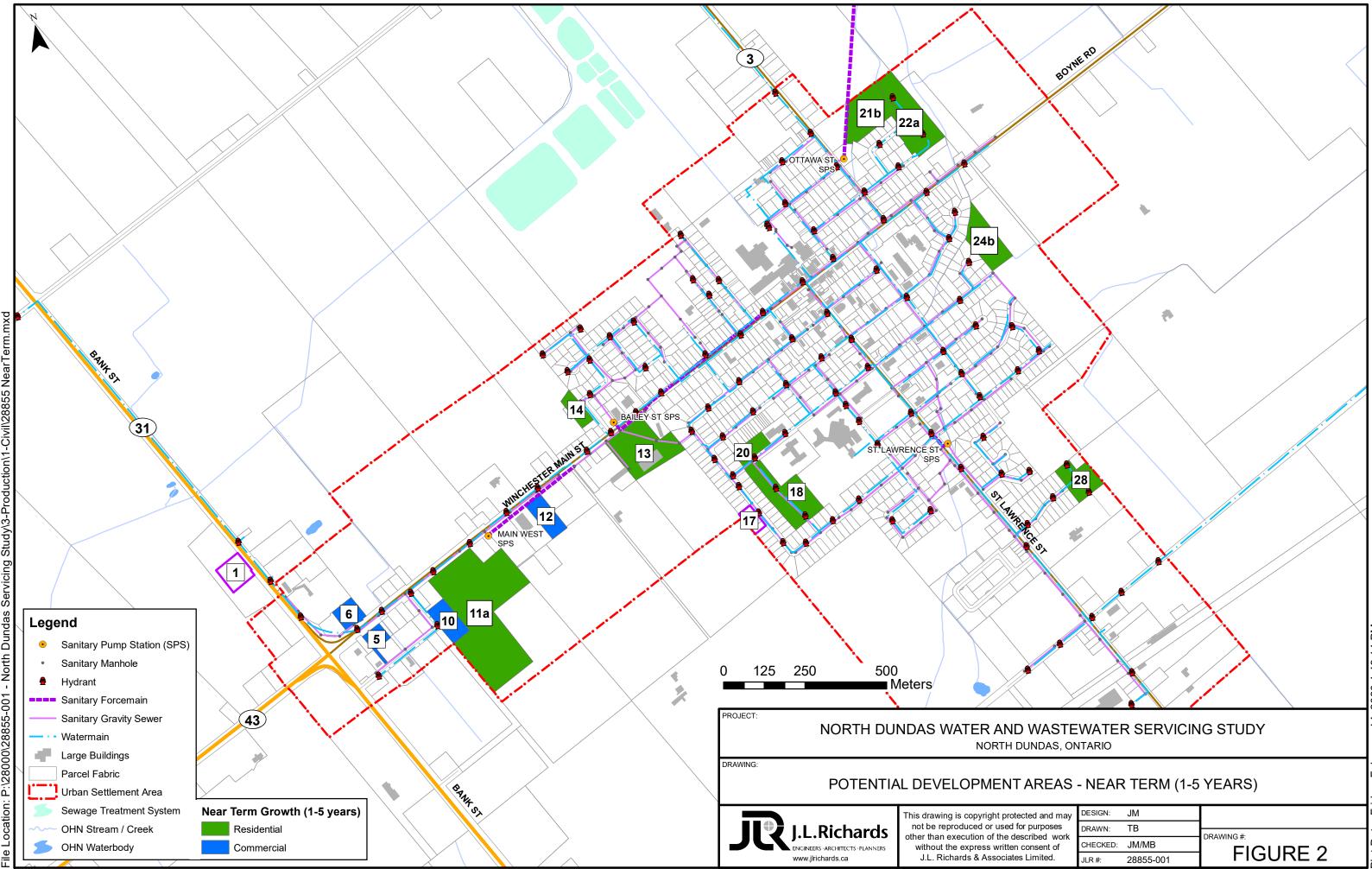
Prepared by:

Prepared by:

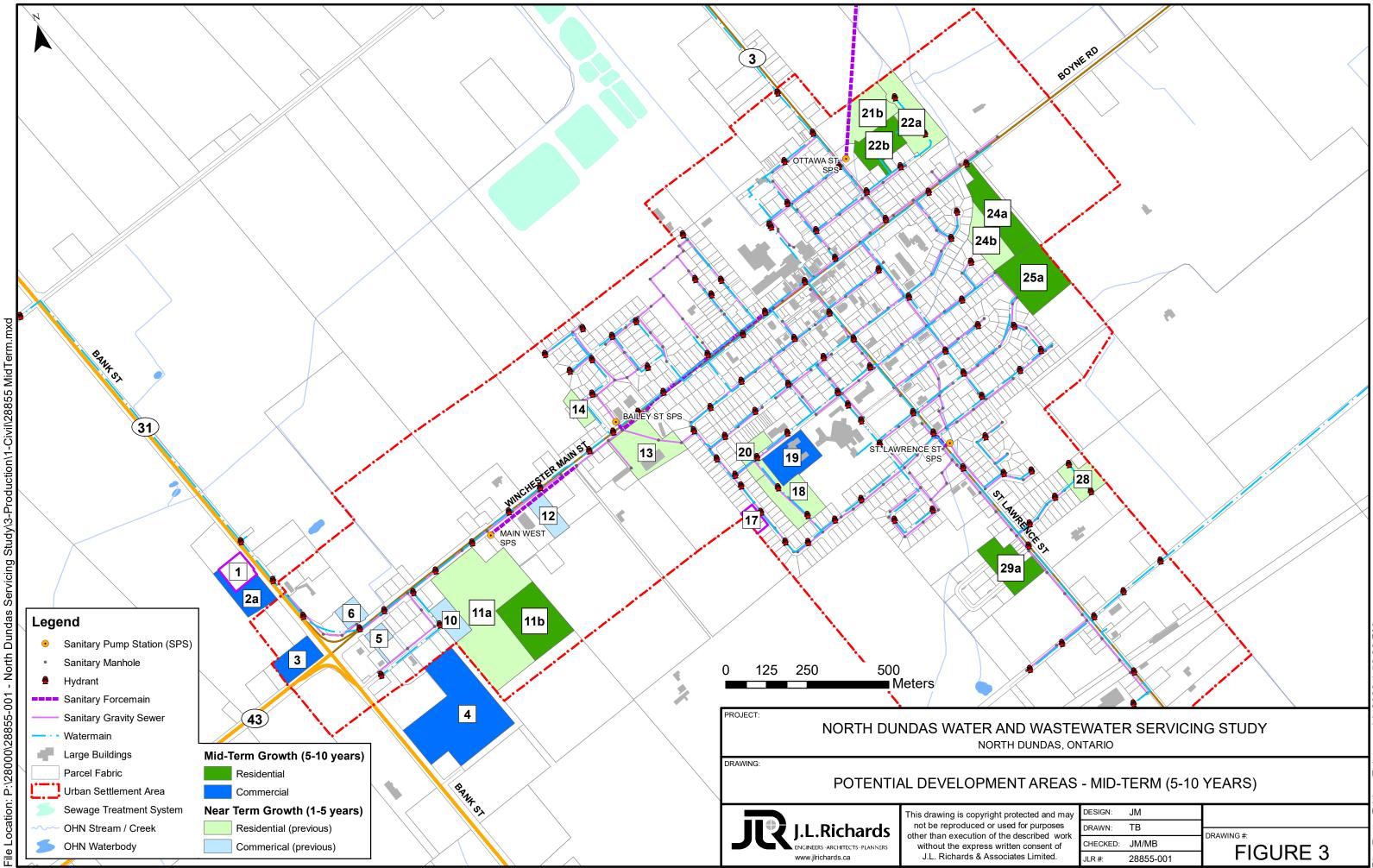

Annie Williams., P.Eng. Civil Engineer

Reviewed by:

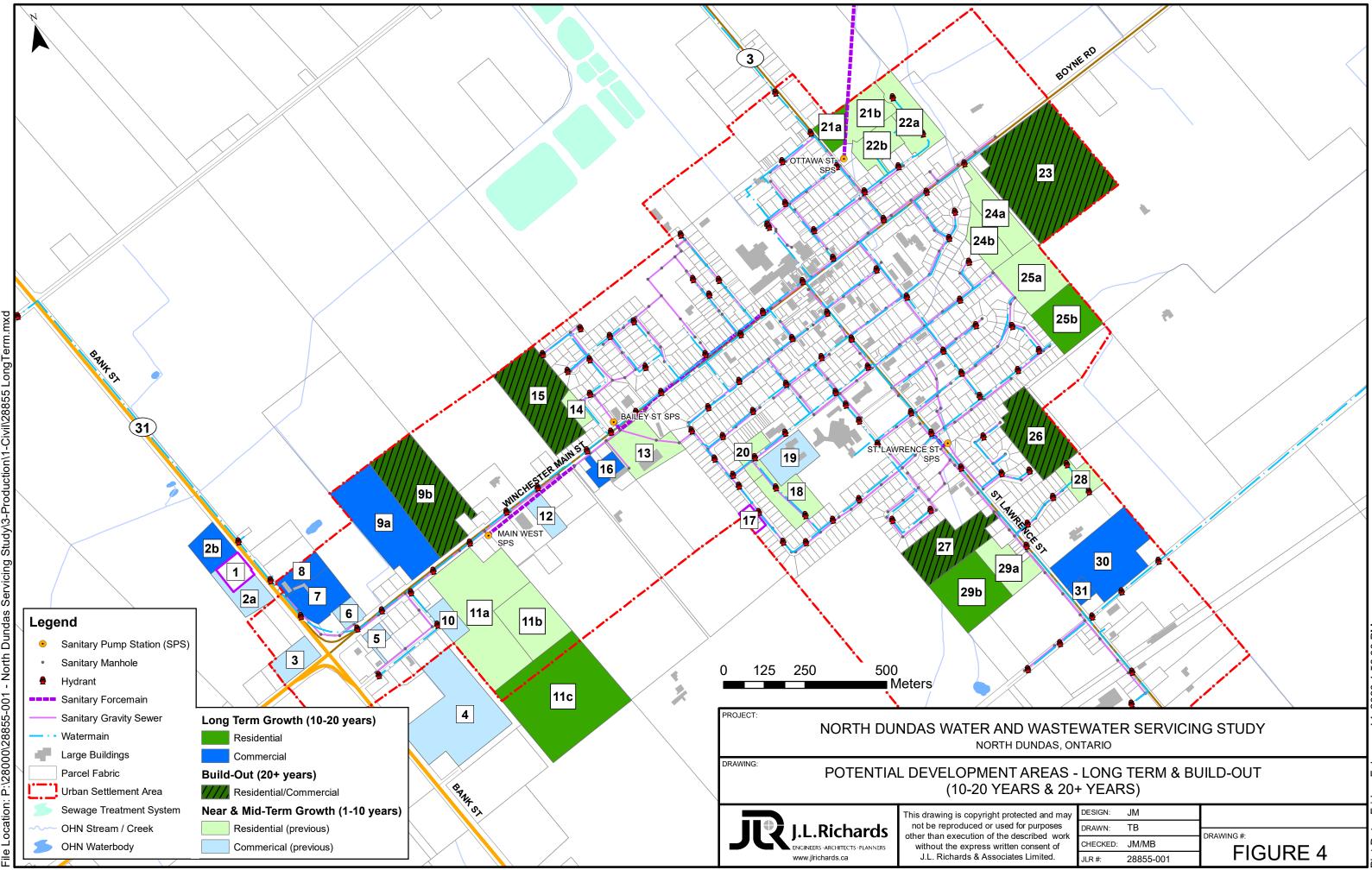
Mark Buchanan, P.Eng. Associate, Senior Civil Engineer


Matt Morkem, P.Eng. Associate, Senior Civil Engineer

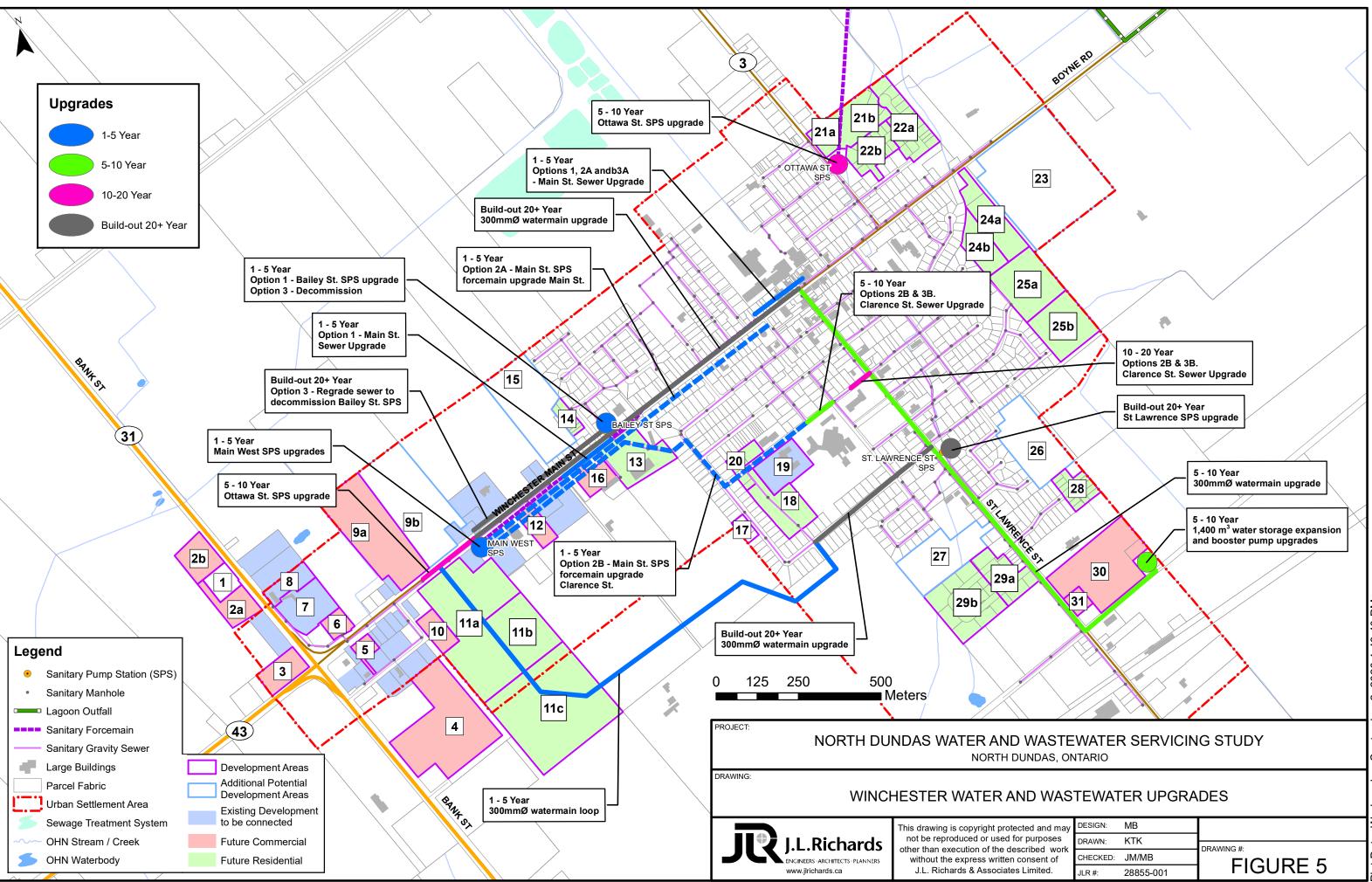
AW/MB:jd Attach.


				.9
ected and may	DESIGN:	SJ		Щ
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	ate
n consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001	FIGURE I	Plot
				. —

2020 1:41:13 PM 14, day, February

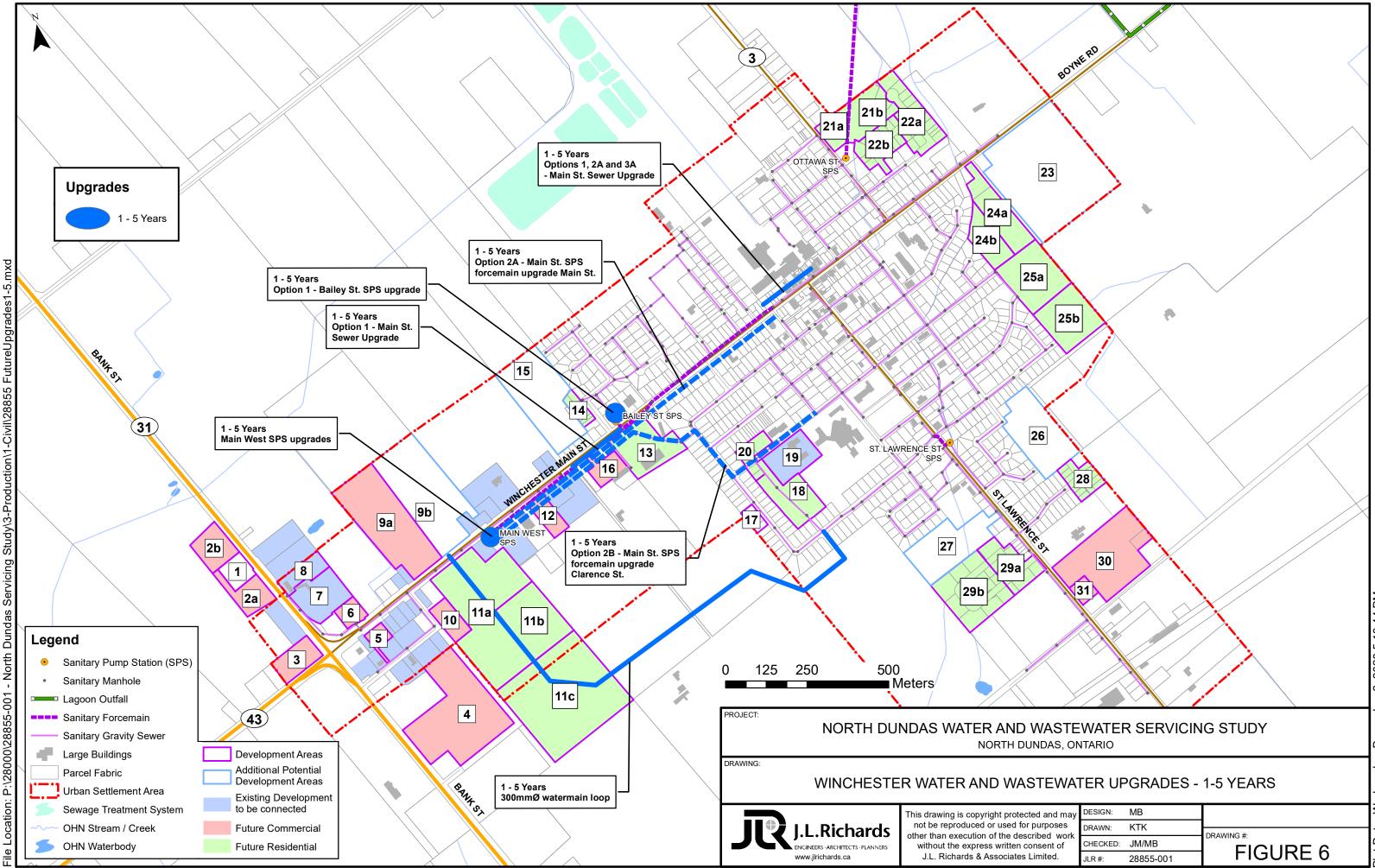

	_			. <u> </u>
ected and may	DESIGN:	JM		ц
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	ate:
consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001		Plot

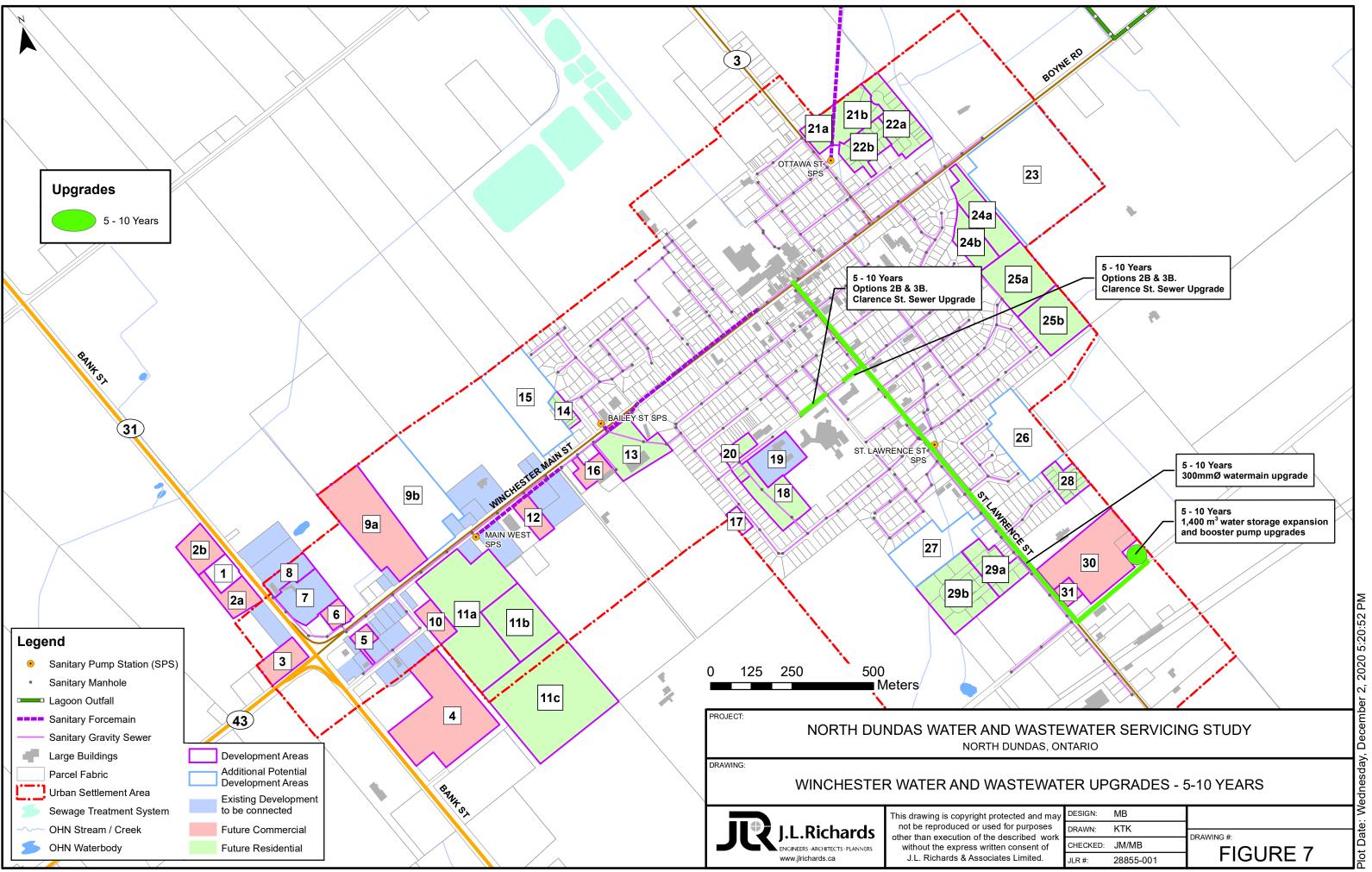
1:49:14 PM 2020 14, iday, February



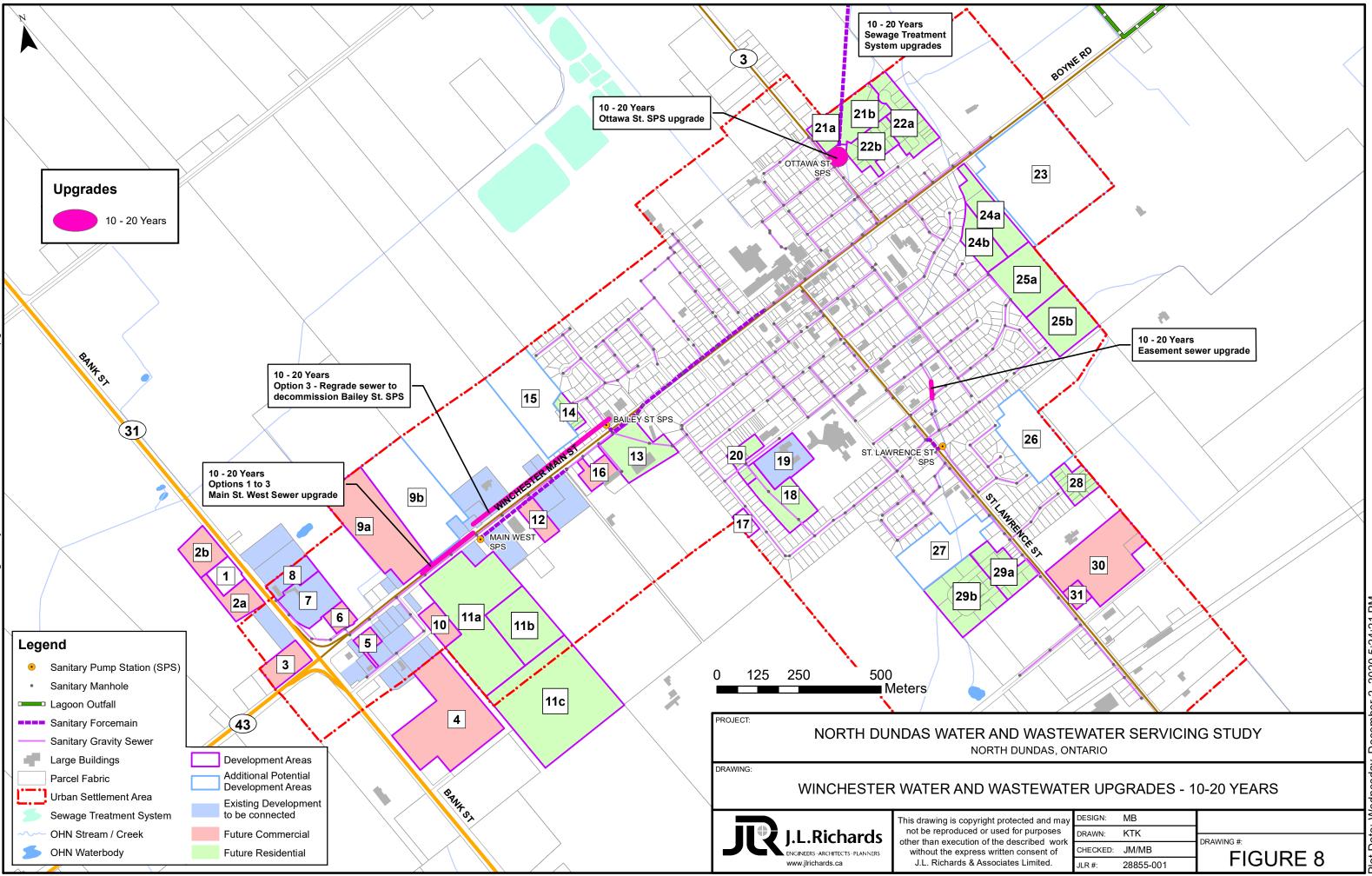
	_			
ected and may	DESIGN:	JM		ц
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	ate:
consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001	FIGURE 3	Plot
				. —

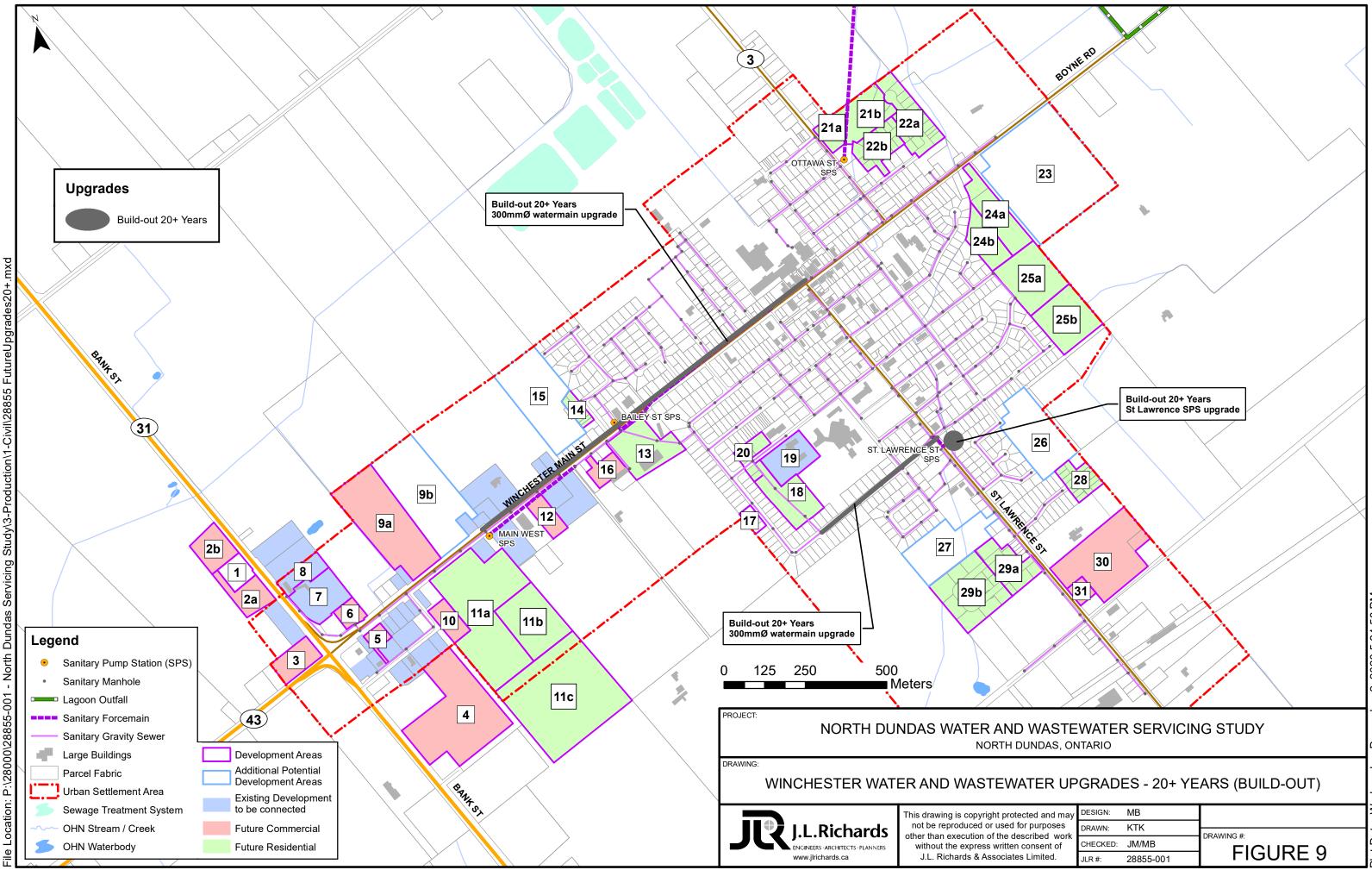
28 52 14, iday, February

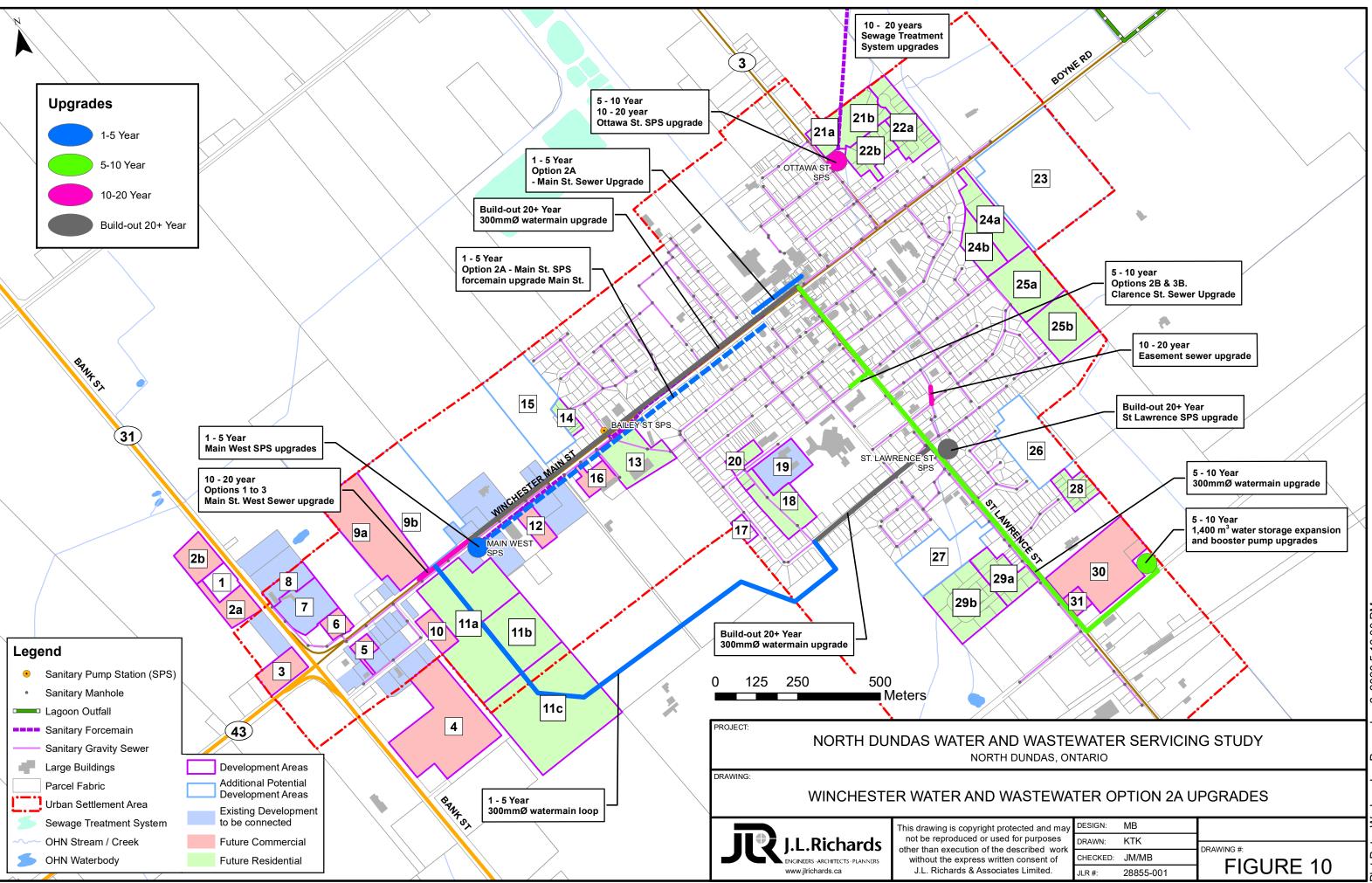

ected and may	DESIGN:	JM		ù
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	oto
consent of	CHECKED:	JM/MB	FIGURF 4	È
es Limited.	JLR #:	28855-001	FIGURE 4	
				· —


рхш

				_ d
ected and may	DESIGN:	MB		N.
for purposes escribed work	DRAWN:	KTK	DRAWING #:	ate.
consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001	FIGURE 5	


2020 1:48:40 PM ц М September Wednesday,


				Ş
ected and may	DESIGN:	MB		~
for purposes escribed work	DRAWN:	KTK	DRAWING #:	ate.
consent of	CHECKED:	JM/MB		t Dat
es Limited.	JLR #:	28855-001	FIGURE 6	Plot
				. —


ected and may	DESIGN:	MB	
for purposes	DRAWN:	КТК	DRAWING #:
escribed work a consent of es Limited.	CHECKED:	JM/MB	
	JLR #:	28855-001	FIGURE 7

				0
ected and may	DESIGN:	MB		3
for purposes escribed work	DRAWN:	KTK	DRAWING #:	d to
n consent of	CHECKED:	JM/MB		È
es Limited.	JLR #:	28855-001	FIGURE 8	

				1.2
ected and may	DESIGN:	MB		2
for purposes escribed work	DRAWN:	KTK	DRAWING #:	
consent of	CHECKED:	JM/MB		È
es Limited.	JLR #:	28855-001	FIGURE 9	

ected and may		MB	
for purposes escribed work a consent of es Limited.	DRAWN: CHECKED:	KTK JM/MB	DRAWING #:
	JLR #:	28855-001	FIGURE 10

2020 5:16:00 PM Ň December Plot Date: Wednesday, Attachment 1

GROWTH PROJECTIONS MEMORANDUM

MEMORANDUM

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

> PAGE 1 OF 5

TO:	Calvin Pol, BES, MCIP, RPP Director of Planning, Building	DATE:	February 14, 2020
	and By-Law Enforcement Township of North Dundas	JOB NO.:	28855-000
FROM:	Jordan Morrissette, M.Eng., P.Eng.	CC:	Angela Rutley, Township of North Dundas Dan Belleau, Township of North Dundas
RE:	North Dundas Drinking Water		Dave Markell, Ontario Clean Water Agency
	Supply System Capacity		Sarah Gore, P.Eng., J.L. Richards & Assoc
	Expansion Class EA Technical		Limited
	Memorandum No. 1		Mark Buchanan, P.Eng., J.L. Richards &
	Population Growth and		Associates Limited
	Development Projections (Rev. 1)		
	DRAFT		
INTROD	UCTION		

leau, Township of North Dundas arkell, Ontario Clean Water Agency ore, P.Eng., J.L. Richards & Associates ichanan, P.Eng., J.L. Richards & tes Limited

The purpose of this Memorandum is to assist in establishing proposed 20 year population projections for the Village of Winchester and the Village of Chesterville within the Township of North Dundas (Township) by determining their potential development opportunities for growth. The 20 year population projections will serve as the basis for establishing the drinking water supply system requirements for the North Dundas Drinking Water Supply System Capacity Expansion Class Environmental Assessment (Class EA).

EXISTING POPULATION AND GROWTH SCENARIOS (WINCHESTER AND CHESTERVILLE)

A review of available 2016 Census information indicates that the population in 2016 within Winchester and Chesterville was approximately 2,394 and 1,677 persons, respectively. It is noted that based on 2011 Census information, the population was 2,460 people in Winchester and 1,448 people in Chesterville, representing an annual percentage growth rate of approximately -0.5% and 3.1%, respectively over the five (5) year period. Due to the development anticipated within both villages over the next 20+ years, the following growth scenarios are proposed to be used for the Class EA:

Low Growth Scenario

- Winchester: Projected annual growth rate of 1.5% from 2016 to 2019. Projected population growth from 2019 to 2039 based on the future potential development within Winchester provided by the Township (refer to Table 1) not including Phase 2 to Phase 5 of the proposed Wellings of Winchester development (Area 11);
- Chesterville: Projected at an annual growth rate of 3.5% from 2016 to 2019 and at an annual growth rate of 1.5% from 2019 to 2039.

High Growth Scenario

Winchester: Projected annual growth rate of 1.5% from 2016 to 2019. Projected population growth from 2019 to 2039 based on the future potential development within Winchester provided by the Township (refer to Table 1) including Phase 2 to Phase 5 of the proposed Wellings of Winchester development (Area 11);

PAGE 2 OF 5

• Chesterville: Projected at an annual growth rate of 3.5% from 2016 to 2019 and at an annual growth rate of 3.5% from 2019 to 2039.

POPULATION PROJECTIONS FOR WINCHESTER

In order to determine the potential population increase in Winchester for the Low Growth and High Growth Scenarios, an updated list of potential development areas and their associated types of land-use was obtained from the Township. Table 1 provides a description of the future potential developments in Winchester and the total projected units and/or commercial area estimated. The areas identified in Table 1 are illustrated in Figure M1-1.

Area	Description	Total Projected Units or Residents	Commercial Area
А	Existing – Not Connected	28	-
1	Pioneer Gas Restaurant / Car Wash	Constructed	-
2A	Commercial #31 Strip	-	1.13 ha
2B	Commercial #31 Strip	-	1.22 ha
3	Commercial #43 / #31 corner	-	0.97 ha
4	Industrial/Commercial John Deere	-	6.17 ha
5	Commercial – Main Street South side	-	0.45 ha
6	Commercial – Main Street North side	-	(0.33 L/s)
7	Motel	14	-
8	Restaurant – Country Kitchen	7	-
9A	Commercial/Residential	-	5.07 ha
9B	Commercial/Residential	-	Buildout ²
10	Commercial	Mini storage	0.88 ha
11A	Wellings of Winchester + Commercial (Phase 1)	68 (refer to Table 2)	2.28 ha
11B	Wellings of Winchester (Phase 2 to Phase 5)	432 (refer to Table 3)	
12	Commercial	-	0.8 ha
13	Residential Infill/Apartment in-houses	15	-
14	Winfields Subdivision	9	-
15	Residential – Winfields Phase 2	-	Buildout ²
16	Commercial	-	0.75 ha
17	Residential (connected)	connected	-
18	New Dundas Manor ³	-	-
19	Old Dundas Manor Building and Property	-	1.19 ha
20	Guy Racine Subdivision - Phase 3	8	-
21A	Seniors Complex	54 residents	-
21B	Development	36	-
22A	Winchester Meadows Subdivision	22	-
22B	Winchester Meadows Subdivision	22	-
23	Vacant Residential	-	Buildout ²
24A	Woods Development	78	-
24B	High Density Apartments	21	-
25A	Woods Development	19	-
25B	Singles & Semis & Townhomes	36	-

TABLE 1: WINCHESTER FUTURE POTENTIAL DEVELOPMENT¹

J.L.Richards

ENGINEERS · ARCHITECTS · PLANNERS

PAGE 3 OF 5

Area	Description	Total Projected Units or Residents	Commercial Area	
26	Residential – Barnhart	-	Buildout ²	
27	Residential - M. Lafortune Investments	-	Buildout ²	
28A	Residential	2	-	
28B	Wintonia Drive / James Street	10	-	
29A	Residential	15	-	
29B	Esper Lane	51	-	
30	Commercial	-	4.34 ha	
31	Commercial	-	0.40 ha	
	LOW GROWTH SCENARIO⁴	393 units + 68 units Wellings + 54 residents	25.65 ha + 0.33 L/s	
HIGH GROWTH SCENARIO ⁵ 500 units Wellings + 25.65 ha + 0.3 54 residents				

List of potential development areas and their associated types of land-use were provided by the Township.
 Additional development areas are available; these development areas are projected beyond a 20-year period.

The flow from the new Dundas Manor is anticipated to remain the same as the flow from existing Dundas Manor.

The new norm the new Dundas Manor is anticipated to remain the same as the new norm exist.
 Low Growth Scenario includes Phase 1 of the Wellings of Winchester Development only.

High Growth Scenario includes Phase 1 to Phase 5 of the Wellings of Winchester Development.

Although, the Township's Official Plan (based on 2016 Census information) indicates a household occupancy of 2.45 persons per unit within the United Counties of Stormont, Dundas and Glengarry, the Township has reported that based on more recent information available, the household occupancy to be used for the Class EA is 2.5 persons per unit. The Township has also identified that the Wellings of Winchester development will have a different household occupancy since the proposed development is intended to be for seniors. Table 2 and Table 3 below presents Phase 1 potential population increase for Wellings of Winchester development (Area 11) as well as the total potential population increase for Phase 2 to Phase 5.

TABLE 2: POTENTIAL POPULATION INCREASE (PHASE 1) - WELLINGS OF WINCHESTER

Unit	Number of Residential Units	Household Occupancy (Persons per unit)	Potential Population Increase
1 - bedroom	42	1.17	49
2 - bedroom	26	1.62	42
TOTAL	68		91

PAGE 4 OF 5

Unit	Number of Residential Units	Household Occupancy (Persons per unit)	Potential Population Increase
1 - bedroom	286	1.17	335
2 - bedroom	146	1.62	237
TOTAL	432		572

TABLE 3: POTENTIAL POPULATION INCREASE (PHASE 2 TO PHASE 5) - WELLINGS OF WINCHESTER

Using the number of total projected units and residents (Table 1) and the different household occupancy for Phase 1 of the Wellings of Winchester development (Table 2), the total potential population increase for the Low Growth Scenario is summarized in Table 4 below.

TABLE 4: POTENTIAL POPULATION INCREASE IN WINCHESTER (LOW GROWTH SCENARIO)

Number of Residential Units	Household Occupancy (Persons per unit)	Number of People (based on units)	Number of Additional Residents (Seniors Complex)	Potential Population Increase		
393	2.5	983	54	1,037		
68	See Table 2	91	-	91		
461	-	1,074	54	1,128		
 The above equivalent population is based on the Low Growth Scenario which does not include Phase 2 to Phase 5 of Area 11 – Wellings of Winchester Development. 						

Using the above information, the 2039 population projections for the Low Growth and High Growth Scenarios in Winchester were determined and presented in Table 5.

TABLE 5: POPUL	ATION PROJECTIONS	IN WINCHESTER	(2016 – 2039)

	Low Growth Scenario		High Growth Scenario		
Year	Projected Population Increase (Persons)	Population Projected (Low Growth Scenario)	Projected Population Increase (Persons)	Population Projected (High Growth Scenario)	
2016	-	2,394 ¹	-	2,394 ¹	
2019	108 ²	2,502	108 ²	2,502	
2039	1,128 ³	3,630	1,128 ⁴ + 572 ⁵	4,202	
2. 20	19 population increase	2016 Census Information for W e is based on an assumed annu	ual growth rate of 1.5		

3. Based on the potential population increase for Low Growth Scenario identified in Table 4.

4. Based on the potential population increase for Low Growth Scenario (including Phase 1 of the Wellings of Winchester development) identified in Table 4.

5. Based on the potential population increase for Phase 2 to Phase 5 of the Wellings of Winchester development identified in Table 3.

PAGE 5 OF 5

POPULATION PROJECTIONS FOR CHESTERVILLE

As determined in consultation with the Township, Table 6 illustrates the projected population for the Low Growth and High Growth Scenarios for Chesterville to 2039 based on annual growth rates of 1.5% and 3.5% respectively.

TABLE 6: POPULATION PROJECTIONS IN CHESTERVILLE (2016	5 – 2039)
---	-----------

	Low Growth Scenario		High Growth Scenario	
Year	Annual Projected Growth Rate (%)	Population Projected (Low Growth Scenario)	Annual Projected Growth Rate (%)	Population Projected (High Growth Scenario)
2016	-	1,677 ¹	-	1,677 ¹
2019	3.5 ²	1,853	3.5 ²	1,853
2039	1.5 ²	2,409	3.5 ²	3,027

1. Population based on the 2016 Census Information for Chesterville.

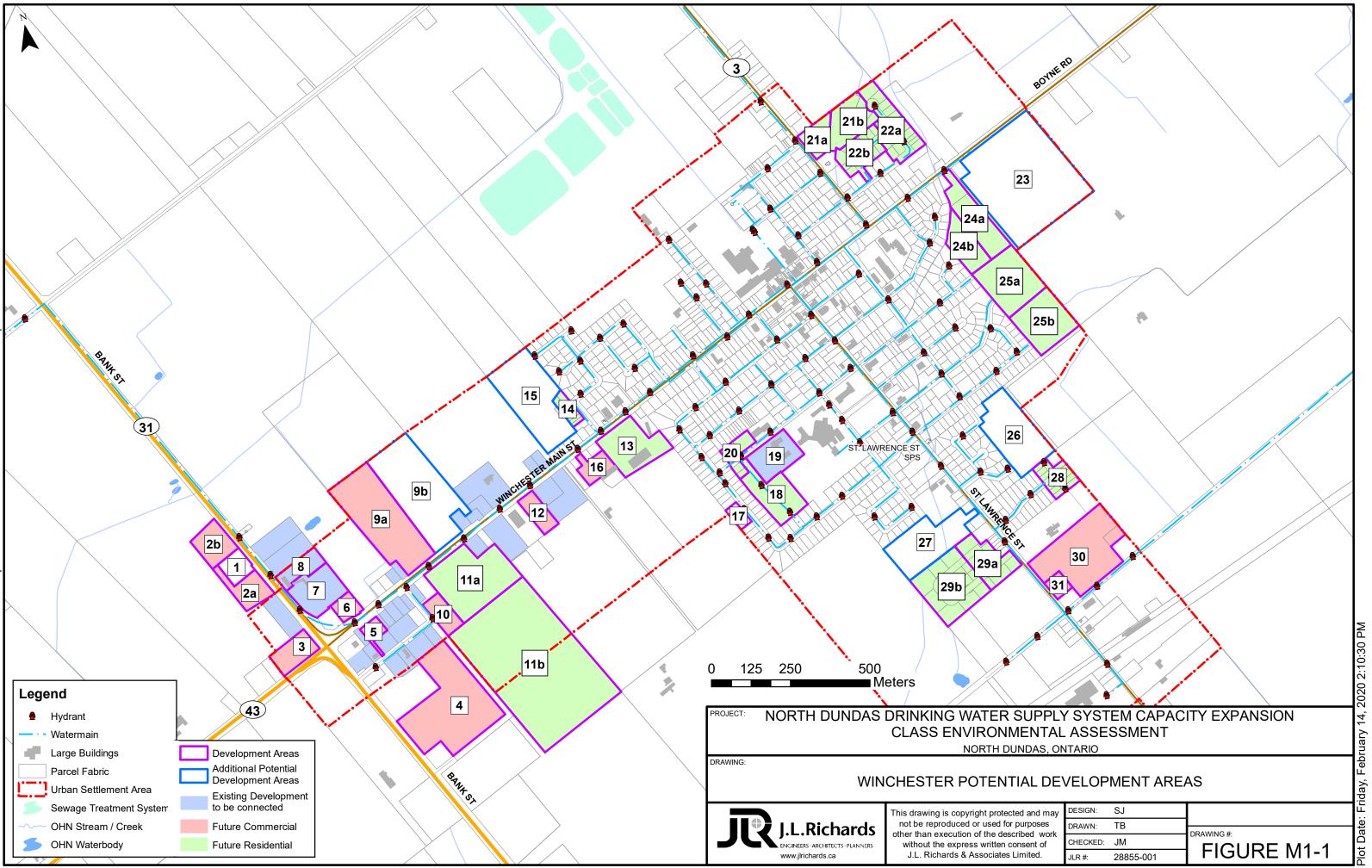
2. 2019 population increase is based on an assumed annual growth rate of 3.5%.

3. Low annual growth rate (1.5%) and high annual growth rate (3.5%) developed in consultation with the Township.

TOTAL PROJECTED POPULATION FOR CLASS EA

As summarized in Table 7, the total projected population for Winchester and Chesterville based on the Low Growth and High Growth Scenarios are 6,039 and 7,229 people, respectively. These population projections will be used to determine water supply requirements for the drinking water system as part of the Class EA.

Village	2019 Total Population	Total Projected Population (Low Growth Scenario)	Total Projected Population (High Growth Scenario)
Winchester	2,502	3,630	4,202
Chesterville	1,853	2,409	3,027
TOTAL	4,355	6,039	7,229

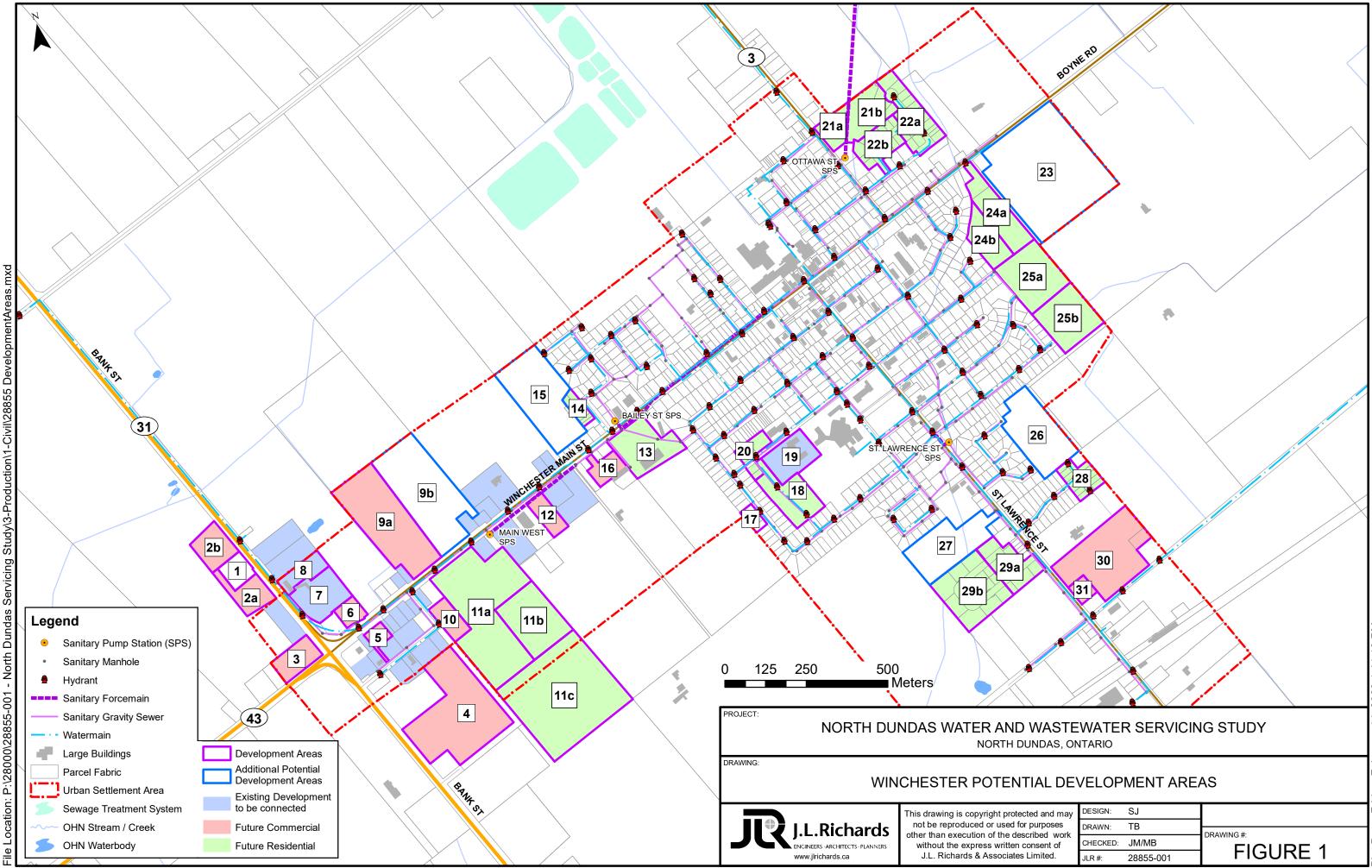

Prepared by

Reviewed by

J.L. RICHARDS & ASSOCIATES LIMITED

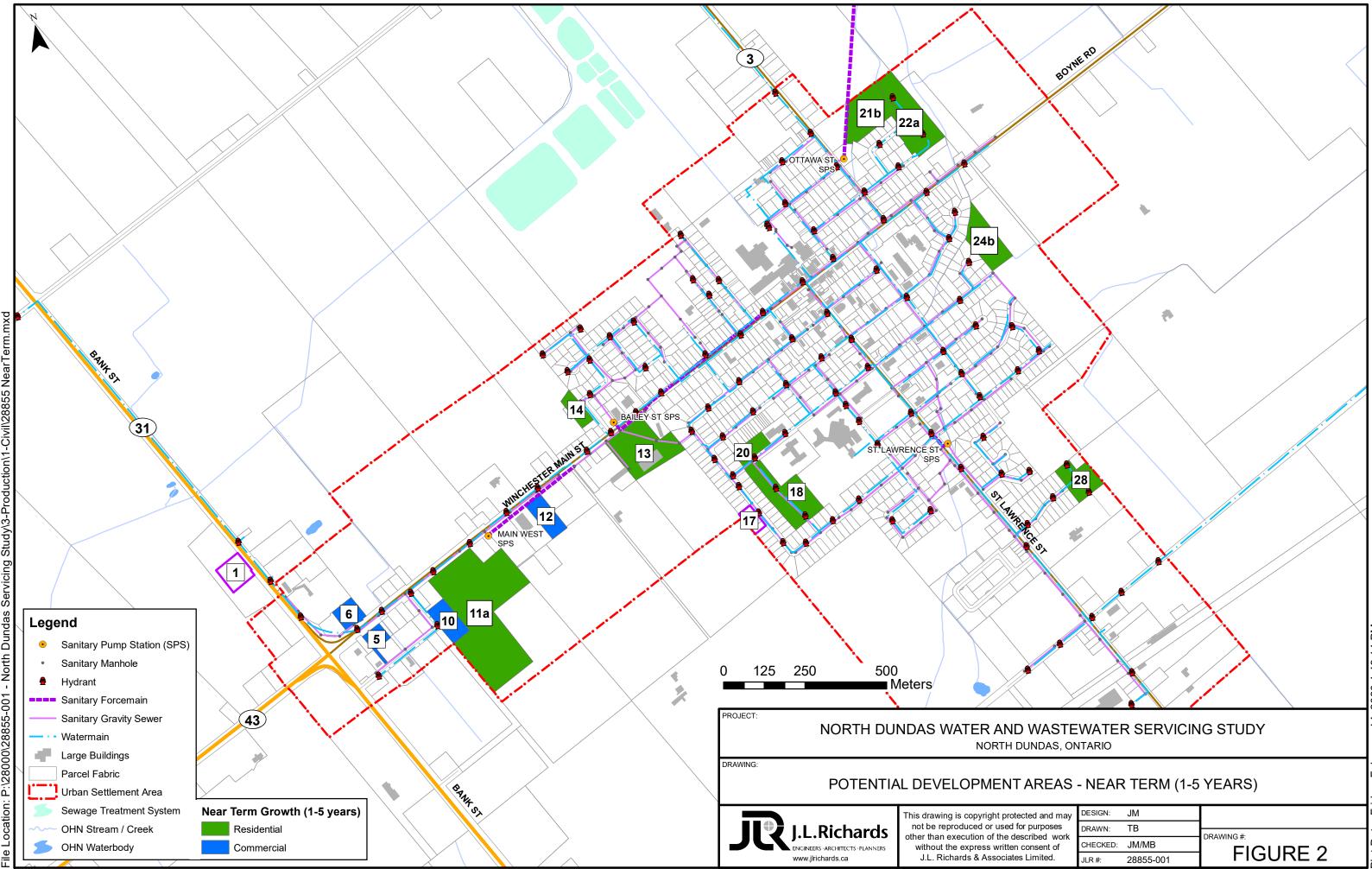
J.L. RICHARDS & ASSOCIATES LIMITED

Sara Jamaliniya, M.Eng.

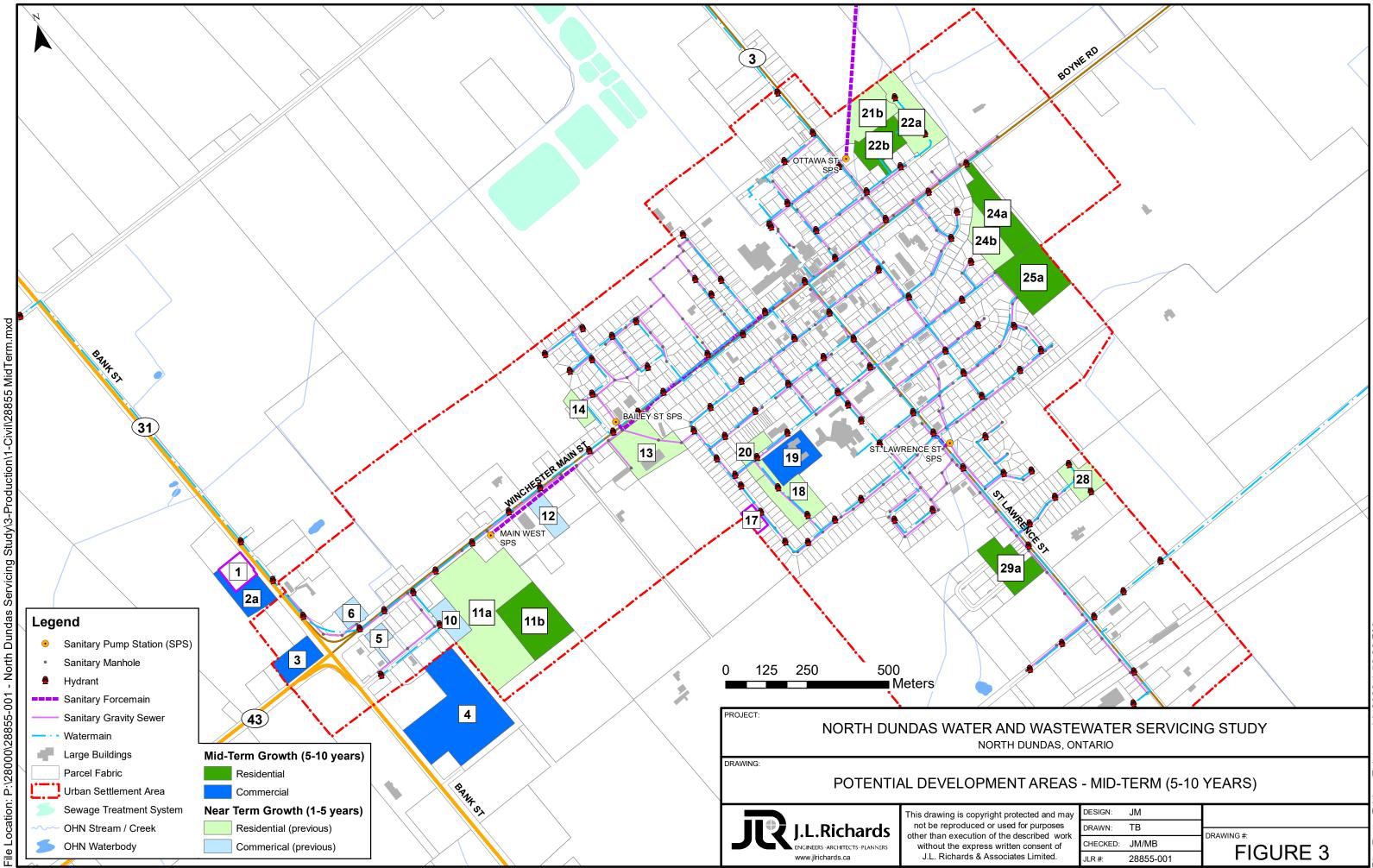


				•
ected and may	DESIGN:	SJ		L
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	-
consent of	CHECKED:	JM		(
es Limited.	JLR #:	28855-001	FIGURE M1-1	i

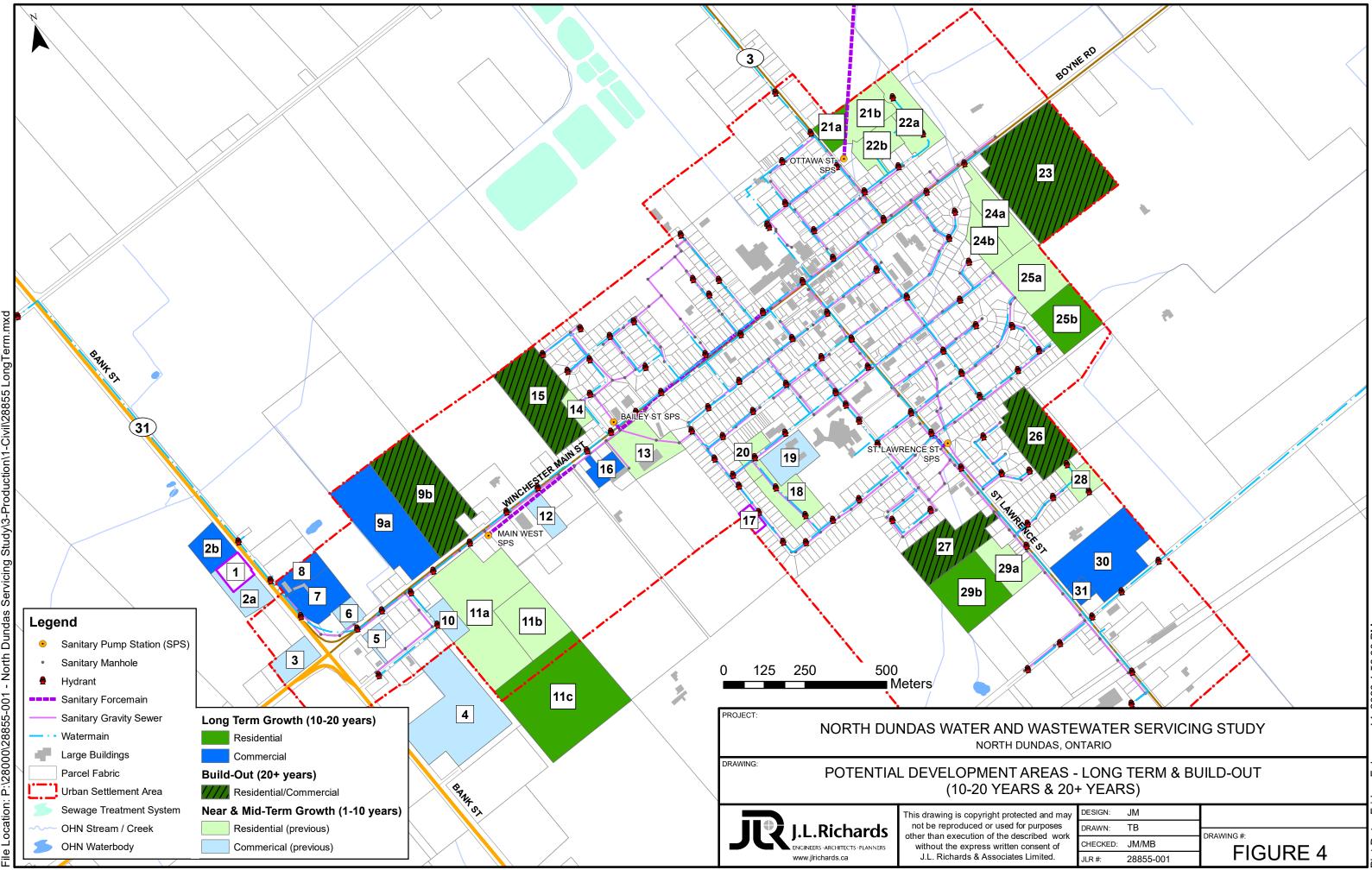
TOWNSHIP OF NORTH DUNDAS NORTH DUNDAS WATER AND WASTEWATER SERVICING STUDY DEVELOPMENT PROJECTION AND PHASING


TABLE 1: WINCHESTER FUTURE POTENTIAL DEVELOPMENT⁽¹⁾

				Phasing (Years)
Area	Description	Total Projected Units or Residents	Commercial Area	Near Term (1-5 Years), Mid-Term (5- 10 Years), Long-Term (10-20 Years) or Build-Out (20+ Years)
А	Existing – Not Connected	28	-	10 – 20
1	Pioneer Gas Restaurant / Car Wash	Constructed	-	Connected
2A	Commercial #31 Strip	-	1.13 ha	5 – 10
2B	Commercial #31 Strip	-	1.22 ha	10 – 20
3	Commercial #43 / #31 corner	-	0.97 ha	5 – 10
4	Industrial/Commercial John Deere	-	6.17 ha	5 – 10
5	Commercial – Main Street South side	-	0.45 ha	1 - 5
6	Commercial – Main Street North side	(0.33 L/s)	0.20 ha	1 - 5
7	Motel	14	-	10 - 20
8	Restaurant – Country Kitchen	7	-	10 - 20
9A	Commercial/Residential	-	5.07 ha	10 - 20
9B	Commercial/Residential	-	5.53 ha	20+
10	Commercial	-	0.88 ha	1 - 5
11A	Wellings of Winchester (Phase 1 and Phase 2)	150	2.28 ha	1 - 5
11B	Wellings of Winchester (Phase 3)	86	-	5 – 10
11C	Wellings of Winchester (Phase 4 to Phase 5)	264 (2)	-	10 – 20
12	Commercial	-	0.80 ha	1 – 5
13	Residential Infill / Apartment in-houses	15	-	1 – 5
14	Winfields Subdivision	9	-	1 – 5
15	Residential – Winfields Phase 2	4.31 ha	-	20+
16	Commercial	-	0.75 ha	10 – 20
17	Residential	Connected	-	Connected
18	New Dundas Manor ⁽³⁾	-	-	1 – 5
19	Old Dundas Manor Building and Property	-	1.19 ha	5 – 10
20	Guy Racine Subdivision (Phase 3)	8	-	1 – 5
21A	Seniors Complex	54 residents	-	10 – 20
21B	Development	36	-	1 – 5
22A	Winchester Meadows Subdivision	22	-	1 – 5
22B	Winchester Meadows Subdivision	22	-	5 – 10
23	Vacant Residential	9.80 ha	-	20+
24A	Woods Development	78	-	5 – 10
24B	High Density Apartments	21	-	1 - 5
25A	Woods Development	19	-	5 - 10
25B	Singles & Semis & Townhomes	36	-	10 - 20
26	Residential – Barnhart	3.36 ha	-	20+
27	Residential - M. Lafortune Investments	3.09 ha	-	20+
28A	Residential	2	-	1 – 5
28B	Wintonia Drive / James Street	10	-	1 – 5
29A	Residential	15	-	5 – 10
29B	Esper Lane	51	-	10 – 20
30	Commercial	-	4.34 ha	10 – 20
31	Commercial	-	0.40 ha	10 – 20
	Near Term (1-5 Years)	273 Units + 0.33 L/s	4.61 ha	-
	Mid-Term (5-10 Years)	220 Units	9.46 ha	
	Long-Term (10-20 Years)	400 Units + 54 Residents	11.78 ha	
	Buildout (20+ Years)	20.56 ha	5.53 ha	-
1. List c	f potential development areas and their associated			


				.9
ected and may	DESIGN:	SJ		Щ
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	ate
n consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001	FIGURE I	Plot
				. —

2020 1:41:13 PM 14, day, February


	_			. <u> </u>
ected and may	DESIGN:	JM		ц
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	ate:
consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001		Plot

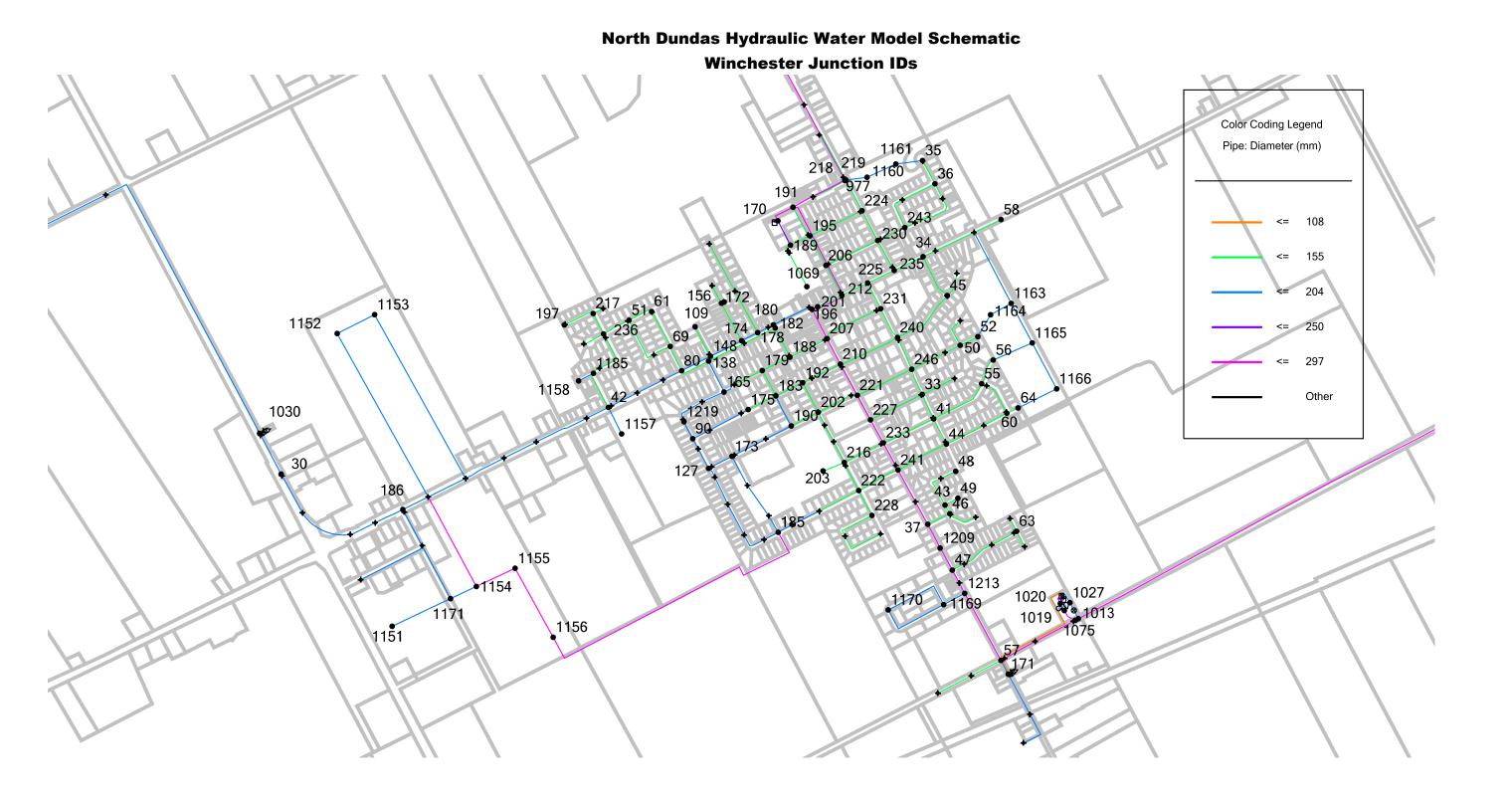
1:49:14 PM 2020 14, iday, February

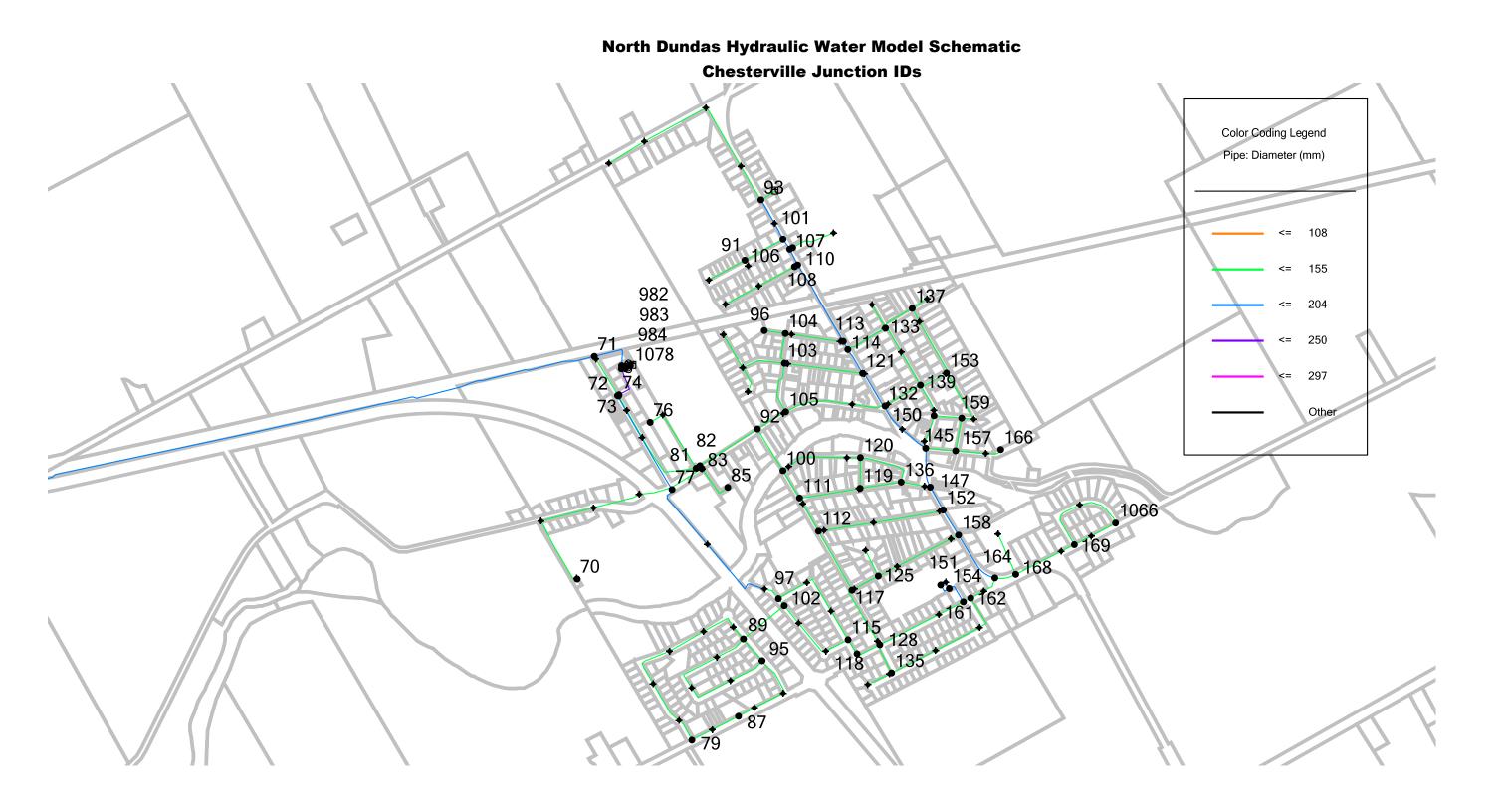
	_			
ected and may	DESIGN:	JM		ц
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	ate:
consent of	CHECKED:	JM/MB		
es Limited.	JLR #:	28855-001	FIGURE 3	Plot
				. —

28 52 14, iday, February

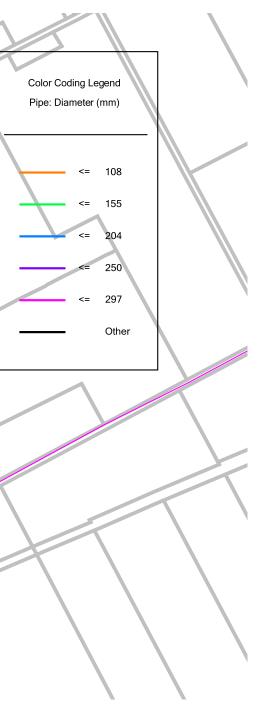
ected and may	DESIGN:	JM		ù
for purposes escribed work	DRAWN:	ТВ	DRAWING #:	oto
consent of	CHECKED:	JM/MB	FIGURF 4	È
es Limited.	JLR #:	28855-001	FIGURE 4	
				· —

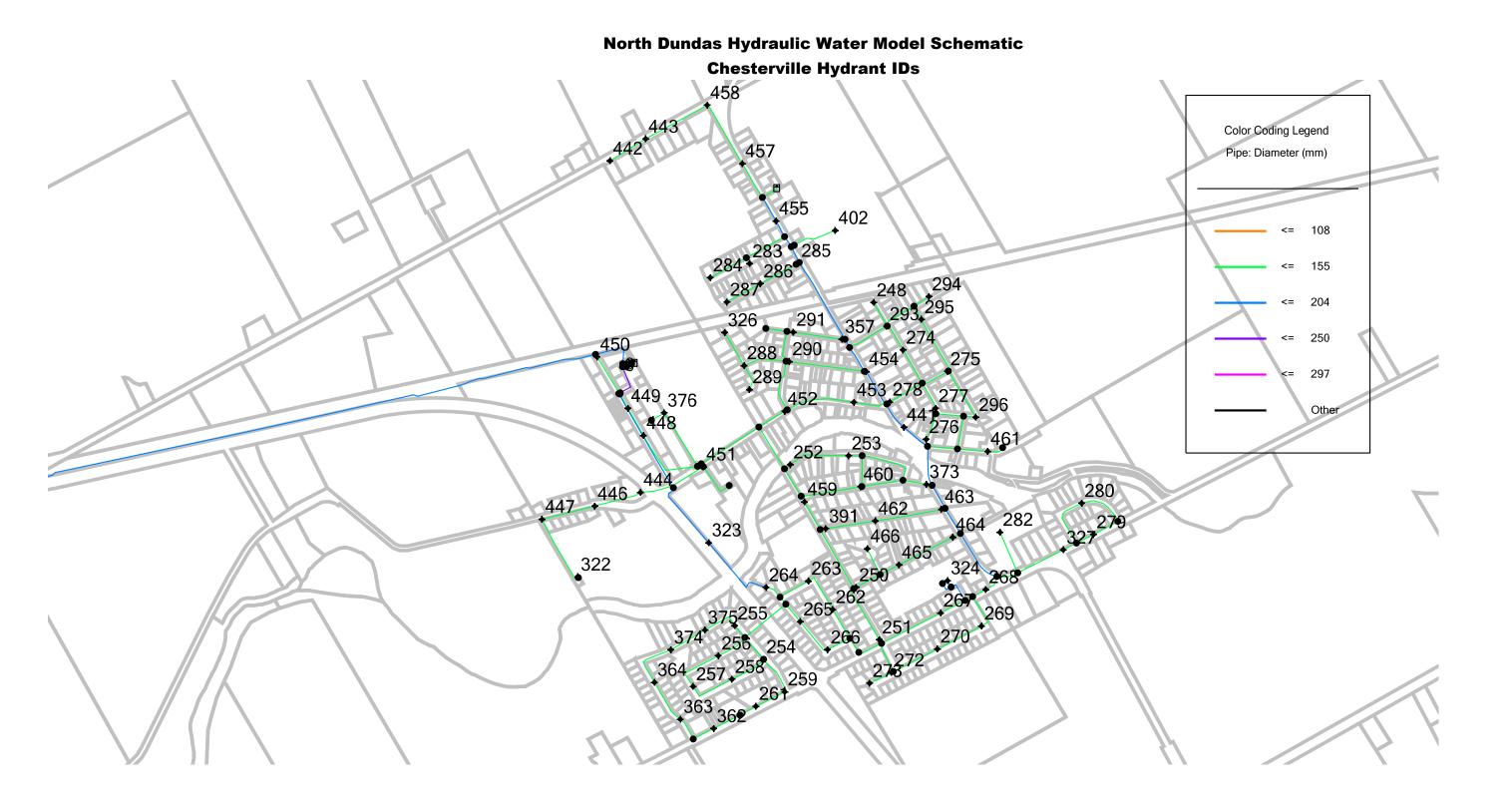
Attachment 2


HYDRAULIC WATER MODEL SCHEMATICS


North Dundas Hydraulic Water Model Overall Schematic

North Dundas Hydraulic Water Model Schematic





North Dundas Hydraulic Water Model Schematic

North Dundas Hydraulic Water Model Schematic **Winchester Hydrant IDs** • • • 383 392 + 381 382 309 308 390•+ . ER - 394 , 396 397 399 400 340 300 417 $356^{+}395^{-}368^{+}315^{+}384$ $336^{+}335^{+}446^{-}336^{-}37^{-}336^{-}426^{+}446^{-}336^{-}37^{$ 416³¹³415 42+306-5 427 +412 260 433^{432³⁰⁷</sub>} +249 408 319 292 + 271 318 + 281 318 437₃₂₀378 339 377 380 318 410 369 370

	EXISTING	
ID	Label	Pressure
30	J-1	369
33 34	J-101 J-102	367 365
35	J-102	375
36	J-104	377
37	J-105	368
41 42	J-109 J-11	362 360
42	J-111	367
44	J-112	348
45	J-113	371
46 47	J-114 J-116	364 362
48	J-117	357
49	J-118	363
50	J-119	363
51 52	J-12 J-120	371 364
55	J-123	366
56	J-124	363
57	J-125	355
58 60	J-126 J-129	362 347
61	J-129	368
63	J-131	352
64	J-132	355
66 69	J-135 J-14	323 354
70	J-140	377
72	J-142	363
73	J-143	363
74 76	J-144 J-146	359 368
77	J-147	372
79	J-149	363
80	J-15	349
81 82	J-150 J-151	369 369
83	J-152	369
85	J-154	386
87	J-157	360
89 90	J-159 J-16	375 356
91	J-160	353
92	J-162	369
93	J-163	324
95 96	J-165 J-167	370 372
97	J-168	372
100	J-170	418
101	J-171	339
102	J-172 J-173	371 372
100	J-174	367
105	J-175	373
106 107	J-176 J-177	344 344
107	J-177 J-178	344 356
109	J-18	337
110	J-180	349
111 112	J-182 J-183	374 377
112	J-183 J-187	366
114	J-188	366
115	J-189	373
117	J-191	377
118 119	J-192 J-193	372 382
120	J-194	394
121	J-195	371
125	J-199 J-20	378 352
127 128	J-20 J-200	352
132	J-204	379
133	J-205	368
135	J-207	375

		м	Г
ID .	Label	Pressure	F
30	J-1	369	
33	J-101	366	┝
34 35	J-102 J-103	365 375	┝
36	J-104	377	-
37	J-105	367	ľ
41	J-109	361	
42	J-11	359	
43 44	J-111 J-112	367 347	-
44	J-112 J-113	371	-
46	J-114	364	
47	J-116	361	
48	J-117	357	_
49	J-118 J-119	362	-
50 51	J-119 J-12	363 370	-
52	J-120	364	-
55	J-123	365	F
56	J-124	363	
57	J-125	355	_
58	J-126	362	-
60 61	J-129 J-13	347 368	┢
63	J-131	351	┢
64	J-132	355	
66	J-135	323	
69	J-14	353	╞
70 72	J-140 J-142	375 362	-
73	J-142 J-143	362	┢
74	J-144	358	
76	J-146	367	
77	J-147	371	Ĺ
79	J-149	362	-
80 81	J-15 J-150	349 368	-
82	J-150	368	F
83	J-152	368	F
85	J-154	385	
87	J-157	359	_
89 90	J-159 J-16	374 355	-
90	J-160	352	F
92	J-162	368	F
93	J-163	323	Γ
95	J-165	368	
96	J-167	371	_
97	J-168	370	-
100 101	J-170 J-171	416 338	┢
102	J-172	369	F
103	J-173	371	
104	J-174	366	
105	J-175	372	╞
106 107	J-176 J-177	344 344	╞
107	J-177	355	┢
109	J-18	337	F
110	J-180	348	
111	J-182	373	
112	J-183	376	┝
113 114	J-187 J-188	365 365	╞
115	J-189	372	╞
117	J-191	376	F
118	J-192	371	Ē
119	J-193	380	ļ
120	J-194	393	╞
121 125	J-195 J-199	370 376	┢
127	J-20	352	┢
128	J-200	373	F
132	J-204	378	
133	J-205	366	┝
135	J-207	373	L

	MID TERM	
ID	Label	Pressure
30	J-1	368
33	J-101	366
34 35	J-102 J-103	365 375
36	J-103 J-104	375
37	J-104	367
41	J-109	361
42	J-11	359
43	J-111	367
44	J-112	347
45	J-113	371
46	J-114	364
47	J-116	361
48 49	J-117 J-118	357 362
<u>49</u> 50	J-110 J-119	363
51	J-12	370
52	J-120	363
55	J-123	365
56	J-124	363
57	J-125	355
58	J-126	361
60	J-129	347
61	J-13	367 351
63 64	J-131	351
66	J-132 J-135	355
69	J-14	352
70	J-140	374
72	J-142	360
73	J-143	360
74	J-144	356
76	J-146	365
77	J-147	369
79	J-149	360
80	J-15	348
81	J-150	366
82 83	J-151 J-152	366 366
85	J-152 J-154	383
87	J-157	357
89	J-159	372
90	J-16	355
91	J-160	351
92	J-162	366
93	J-163	323
95	J-165	367
96	J-167	369
97	J-168	369 415
100 101	J-170 J-171	337
101	J-171	368
102	J-172	370
104	J-174	365
105	J-175	371
106	J-176	343
107	J-177	343
108	J-178	354
109	J-18	336
110	J-180	347
111 112	J-182 J-183	372
112	J-183 J-187	374 364
113	J-187	364
115	J-189	370
117	J-191	374
118	J-192	369
119	J-193	379
	J-194	391
120	1405	368
121	J-195	
121 125	J-199	375
121 125 127	J-199 J-20	375 351
121 125 127 128	J-199 J-20 J-200	375 351 371
121 125 127	J-199 J-20	375 351

I	ONG TER	M	
ID -	Label	Pressure	ID
30	J-1	366	30
33	J-101	365	33
34	J-102	364	34
35 36	J-103 J-104	375 376	35 36
37	J-104	366	37
41	J-109	360	41
42	J-11	357	42
43	J-111	366	43
44 45	J-112 J-113	346	44 45
45	J-113 J-114	370 363	45
47	J-116	360	47
48	J-117	356	48
49	J-118	361	49
50	J-119	362	50
51 52	J-12 J-120	368 362	51 52
55	J-120	364	55
56	J-124	362	56
57	J-125	354	57
58	J-126	360	58
60	J-129	346	60
61 63	J-13 J-131	366 350	61 63
64	J-131 J-132	350	64
66	J-135	323	66
69	J-14	351	69
70	J-140	370	70
72	J-142	356	72
73 74	J-143 J-144	356 352	73 74
74	J-144 J-146	361	74
77	J-147	365	77
79	J-149	356	79
80	J-15	347	80
81	J-150	362	81
82 83	J-151 J-152	362 362	82 83
85	J-152	379	85
87	J-157	353	87
89	J-159	368	89
90	J-16	353	90
91	J-160	349	91
92 93	J-162 J-163	363 322	92 93
95	J-165	363	95
96	J-167	366	96
97	J-168	365	97
100	J-170	411	100
101	J-171	336	101
102 103	J-172 J-173	364 366	102
103	J-173	361	103
105	J-175	367	105
106	J-176	341	106
107	J-177	341	107
108 109	J-178 J-18	352 335	108 109
109	J-180	345	109
111	J-182	368	111
112	J-183	370	112
113	J-187	360	113
114	J-188	360	114
115 117	J-189 J-191	366 370	115 117
117	J-191 J-192	365	117
110	J-192	375	110
120	J-194	388	120
121	J-195	365	121
125	J-199	371	125
127 128	J-20 J-200	350 367	127 128
128	J-200 J-204	367	128
133	J-205	361	133
135	J-207	368	135

		BUILD OU	
sure	1D 30	Label J-1	Pressure 365
50 65	33	J-101	364
55 64	34	J-101	363
75	35	J-102	374
76	36	J-103	376
56	37	J-104	365
50	41	J-109	359
57	42	J-11	356
56	43	J-111	365
46	44	J-112	345
70	45	J-113	369
53	46	J-114	362
60	47	J-116	359
56	48	J-117	354
61	49	J-118	360
62	50	J-119	361
68	51	J-12	367
62	52	J-120	361
64	55	J-123	363
62	56	J-124	361
54	57	J-125	353
60	58	J-126	359
16	60	J-129	345
66	61	J-13	364
50	63	J-131	349
54	64	J-132	353
23	66	J-135	322
51	69	J-14	350
70	70	J-140	370
56	72	J-142	356
56	73	J-143	356
52	74	J-144	352
51	76	J-146	361
35	77	J-147	365
56	79	J-149	356
47	80	J-15	346
62	81	J-150	362
52 52	82	J-151	362
-	83	J-152	362
79 53	85	J-154	379 353
	87	J-157	
58 53	89 90	J-159 J-16	368 352
19	90	J-160	349
+9 63	91	J-160	363
22	92	J-162	303
33	95	J-165	363
		1.1.0=	
66 65	96 97	J-167 J-168	366 365
11	100	J-170	411
36	100	J-170	336
50 54	101	J-171	364
6 6	102	J-172	366
50 51	103	J-173	361
67	104	J-175	367
41	106	J-176	341
41	100	J-177	341
52	107	J-178	352
35	100	J-18	334
45	110	J-180	345
58	111	J-182	368
70	112	J-183	370
60	113	J-187	360
60	114	J-188	360
66	115	J-189	366
70	117	J-191	370
65	118	J-192	365
75	119	J-193	375
38	120	J-194	388
65	121	J-195	365
71	125	J-199	371
50	127	J-20	349
67	128	J-200	367
73	132	J-204	373
	133	J-205	361
51			

ID Label Pressure 136 J-208 392 137 J-209 371 138 J-210 380 145 J-217 397 147 J-219 399 148 J-22 381 150 J-222 381 151 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-245 351 172 J-25 320 173 J-26 352 174		EXISTING	ì
137 J-209 371 138 J-21 331 139 J-210 380 145 J-217 397 147 J-219 399 148 J-22 331 150 J-222 381 151 J-225 385 152 J-226 383 153 J-227 382 154 J-230 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 162 J-235 376 165 J-24 333 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-26 352 174			
138 J-21 331 139 J-210 380 145 J-217 397 147 J-219 399 148 J-22 331 150 J-222 381 151 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 162 J-235 376 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179			
139 J-210 380 145 J-217 397 147 J-219 399 148 J-22 331 150 J-222 381 151 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 173 J-26 352 174 J-27 315 185 J-39 351 186	-	J-209 .I-21	-
145 J-217 397 147 J-219 399 148 J-22 331 150 J-222 381 151 J-225 385 152 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-243 378 171 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179		J-210	
148 J-22 331 150 J-222 381 151 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-43 368 182 J-36 315 183 <	145		
150 J-222 381 151 J-225 385 152 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-37 339 185 J-39 351 186 J-4 368 188 <			
151 J-225 385 152 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 162 J-235 376 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-275 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 183 J-37 339 185 J-39 351 186			
152 J-226 383 153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-235 376 162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 183 J-37 339 185 J-39 351 186 <			
153 J-227 382 154 J-228 385 156 J-23 320 157 J-230 385 158 J-231 379 159 J-232 386 161 J-234 376 162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 183 J-37 339 185 J-39 351 186 <			
156J-23320157J-230385158J-231379159J-232386161J-234376162J-235376164J-239373165J-24333166J-240394168J-242374169J-243378170J-244338171J-245351172J-25320173J-26352174J-27315175J-28343178J-30314179J-31326180J-34315182J-36315183J-37339185J-39351186J-4368188J-41319189J-42322190J-43344191J-44339192J-45325195J-48325196J-49312197J-5379201J-53315202J-54338203J-55342206J-58327207J-59317210J-62332216J-69345217J-7378218J-70356219J-72356221J-74349222J-75353<	153	J-227	
157 J-230 385 158 J-231 379 159 J-232 386 161 J-235 376 162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 190			
158J-231 379 159J-232386161J-234376162J-235376164J-239373165J-24333166J-240394168J-242374169J-243378170J-244338171J-245351172J-25320173J-26352174J-27315175J-28343178J-30314179J-31326180J-34315182J-36315183J-37339185J-39351186J-4368188J-41319189J-42322190J-43344191J-44339192J-45325195J-48325196J-49312197J-5379201J-53315202J-54338203J-55342206J-58327207J-59317210J-62332216J-69345217J-7378218J-70356221J-74349222J-75353224J-80360225J-79367230J-84376			
159 J-232 386 161 J-234 376 162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-45 325 191 J-44 38 192 J-4			
162 J-235 376 164 J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 196 J-49		J-232	
164J-239 373 165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 195 J-48 325 196 J-49 312 197 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69 345 217 J-7 378 216 J-69 345 217 J-78 359 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 <t< td=""><td>161</td><td></td><td></td></t<>	161		
165 J-24 333 166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 195 J-48 325 196 J-49 312 197 J-5 <td></td> <td></td> <td></td>			
166 J-240 394 168 J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 195 J-48 325 196 J-49 312 197 J-5 379 201 J-53 <td>-</td> <td></td> <td></td>	-		
168J-242 374 169 J-243 378 170 J-244 338 171 J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-75 353 216 J-69 345 217 J-7 378 218 J-70 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-96			
170J-244338171J-245351172J-25320173J-26352174J-27315175J-28343178J-30314179J-31326180J-34315182J-36315183J-37339186J-4368188J-41319189J-42322190J-43344191J-44339195J-48325196J-49312197J-5379201J-53315202J-54338203J-55342206J-58327207J-59317210J-62332212J-65332216J-69345217J-7378218J-70356221J-75353224J-78359233J-87362236J-9376237J-89364236J-9378241J-94370243J-96364246J-99382248H-10375250H-100377251H-101374252H-102418			
171J-245 351 172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69 345 217 J-7 378 218 J-70 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-96 364 246 J-99 382 248 H-1 366 249 H-100 377 250 H-100 37			
172 J-25 320 173 J-26 352 174 J-27 315 175 J-28 343 178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 195 J-48 325 196 J-49 312 197 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69			
173J-26352174J-27315175J-28343178J-30314179J-31326180J-34315182J-36315183J-37339185J-39351186J-4368188J-41319189J-42322190J-43344191J-44339192J-45325195J-48325196J-49312197J-5379201J-53315202J-54338203J-55342206J-58327207J-59317210J-62332216J-69345217J-7378218J-70356221J-74349222J-75353224J-78359225J-79367227J-80360228J-81365230J-83378231J-84375233J-96364240J-93376240J-93378241J-94370243J-96364246J-99382248H-1366249H-100377250H-100377251 <td></td> <td></td> <td></td>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
178 J-30 314 179 J-31 326 180 J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7			315
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
180J-34 315 182 J-36 315 183 J-37 339 185 J-39 351 186 J-4 368 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374		J-30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
190 J-43 344 191 J-44 339 192 J-45 325 195 J-48 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84			
191 J-44 339 192 J-45 325 195 J-48 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 235 J-89 364 236 J-9			
195 J-48 325 196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-99 376 240 J-93 378 241 J-94			
196 J-49 312 197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-93 376 240 J-93 378 241 J-94 370 243 J-96			
197 J-5 379 201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94			
201 J-53 315 202 J-54 338 203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 230 J-83 378 231 J-84 375 235 J-89 364 236 J-9 376 240 J-93			
203 J-55 342 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10			
206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-99 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100			
207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-93 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101			
210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101			-
212 J-65 332 216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102			
216 J-69 345 217 J-7 378 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418	-		
218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418	216	J-69	345
219 J-72 356 221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-99 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
221 J-74 349 222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418	-		
222 J-75 353 224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418		-	
224 J-78 359 225 J-79 367 227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
227 J-80 360 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-1001 377 251 H-101 374 252 H-102 418			
230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418	-		
235 J-89 364 236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418	231		
236 J-9 376 240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
240 J-93 378 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418		J-89	
241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
243 J-96 364 246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
246 J-99 382 248 H-1 366 249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
249 H-10 375 250 H-100 377 251 H-101 374 252 H-102 418			
250 H-100 377 251 H-101 374 252 H-102 418			
251 H-101 374 252 H-102 418			
252 H-102 418			-
253 H-103 393	252		
· · · · · · · · · · · · · · · · · · ·	253	H-103	393

ID Label Pressure 136 J-208 390 137 J-209 369 138 J-21 331 139 J-210 379 145 J-217 396 147 J-219 398 144 J-22 331 150 J-222 379 151 J-226 382 153 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-243 377 170 J-244 338 171 J-245 351 172 J-26 351 174 J-27 314 175 J-28 342 178			М	
137 J-209 369 138 J-21 331 139 J-210 379 145 J-217 396 147 J-219 398 148 J-222 331 150 J-222 379 151 J-225 383 152 J-226 382 153 J-227 381 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 165 J-24 332 166 J-240 393 168 J-242 372 169 J-243 377 170 J-244 338 171 J-245 351 172 J-26 319 173 J-26 315 184 J-30 313 179 J-31 325 180 J-44 367	ID .			
138 J-21 331 139 J-210 379 145 J-217 396 147 J-219 398 148 J-22 331 150 J-226 382 151 J-226 383 152 J-226 383 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-233 377 163 J-244 332 166 J-240 393 168 J-242 377 170 J-245 351 171 J-245 319 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178	136	J-208	390	
139 J-210 379 145 J-217 396 147 J-219 398 148 J-22 331 150 J-222 379 151 J-225 383 152 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 170 J-245 351 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175	137	J-209	369	
145 J-217 396 147 J-219 398 148 J-22 331 150 J-222 379 151 J-225 383 152 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-240 393 168 J-242 372 166 J-240 393 168 J-242 372 169 J-243 377 170 J-245 351 171 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319	138	J-21	331	
147 J-219 398 148 J-22 331 150 J-222 379 151 J-226 382 152 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-243 377 164 J-240 393 166 J-240 393 166 J-242 372 166 J-243 377 170 J-243 377 171 J-245 351 172 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-36 315	139	J-210	379	
148 J-22 331 150 J-222 379 151 J-226 382 152 J-226 382 153 J-227 381 154 J-228 383 156 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 166 J-240 393 168 J-242 377 170 J-244 338 171 J-226 351 172 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-36 315 183 J-37 338 185	145			
150 J-222 379 151 J-225 383 152 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 164 J-239 372 166 J-240 393 166 J-240 393 168 J-242 377 169 J-243 377 170 J-244 338 171 J-266 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 180	147			
151 J-225 383 152 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-39 351 186 J-4 367 188 J-41 319	148			
152 J-226 382 153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 186 <				
153 J-227 381 154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 169 J-243 377 170 J-245 351 171 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188				
154 J-228 383 156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 372 169 J-243 377 170 J-245 351 171 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-36 315 183 J-37 338 185 J-39 351 186 J-41 367 189 J-42 322 190				
156 J-23 319 157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 170 J-243 377 170 J-244 338 171 J-26 351 172 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J				
157 J-230 384 158 J-231 378 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 166 J-240 393 168 J-242 377 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192				
158 J-231 378 159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 166 J-240 393 166 J-240 393 168 J-242 377 170 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-41 319 182 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197	156			_
159 J-232 385 161 J-234 374 162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 372 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 379 201 J-				
161 J-234 374 162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J48 324 196 J-49 312 197				
162 J-235 374 164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 377 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 <td></td> <td></td> <td></td> <td></td>				
164 J-239 372 165 J-24 332 166 J-240 393 168 J-242 372 169 J-243 377 170 J-245 351 171 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-55 </td <td></td> <td></td> <td></td> <td>-</td>				-
165 J-24 332 166 J-240 393 168 J-242 372 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 <td></td> <td></td> <td></td> <td>_</td>				_
166 J-240 393 168 J-242 372 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-55 341 202 J-54 <td></td> <td></td> <td></td> <td>-</td>				-
168 J-242 372 169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 <td></td> <td></td> <td></td> <td></td>				
169 J-243 377 170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58				
170 J-244 338 171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 211				
171 J-245 351 172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 211 J-74 349 212				
172 J-25 319 173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-53 314 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-75 352 224				
173 J-26 351 174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-55 341 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69 345 217 J-7 377 218 J-70 356 219 <				
174 J-27 314 175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-55 341 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 <				\vdash
175 J-28 342 178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 211 J-70 376 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 <				-
178 J-30 313 179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 211 J-74 349 2212 J-75 352 214 J-79 367 215 J-79 367 224 J-78 359 225				\vdash
179 J-31 325 180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 186 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 211 J-74 349 212 J-65 352 214 J-78 359 215 J-79 367 222 J-75 352 244 J-78 359 225			-	_
180 J-34 315 182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 219 J-74 349 225 J-79 367 227 <		J-30		_
182 J-36 315 183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 219 J-74 349 225 J-79 367 227 J-80 359 244 <	-	.1-34		
183 J-37 338 185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 217 J-65 332 216 J-69 345 217 J-70 356 219 J-72 356 219 J-72 356 221 J-75 352 224 J-78 359 225 J-79 367 226 J-75 352 230				
185 J-39 351 186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 217 J-70 356 218 J-70 356 219 J-72 356 221 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 235				
186 J-4 367 188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-65 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 230 J-83				
188 J-41 319 189 J-42 322 190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 233 J-87 362 233 J-84				
189 J-42 322 190 J-43 344 191 J-43 344 191 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 212 J-65 332 214 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 211 J-74 349 222 J-75 352 244 J-78 359 224 J-78 359 225 J-79 367 233				
190 J-43 344 191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 214 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87				
191 J-44 339 192 J-45 324 195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 235 J-89 364 236 J-93			344	
195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-94	191		339	
195 J-48 324 196 J-49 312 197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-94	192	J-45	324	
197 J-5 379 201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-65 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 233 J-87 362 236 J-9 376 240 J-93 377 241 J-94	195	J-48	324	
201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-65 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 233 J-87 362 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96	196		312	
201 J-53 314 202 J-54 338 203 J-55 341 206 J-58 327 207 J-59 317 210 J-65 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 233 J-87 362 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96	197	J-5	379	
203 J-55 341 206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1	201		314	
206 J-58 327 207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 375 250 H-100	202	J-54	338	
207 J-59 317 210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 211 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 376 250 H-100	203	J-55	341	
210 J-62 332 212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 376 250 H-100 376 251 H-101 373 252 H-102	206	J-58	327	
212 J-65 332 216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 376 250 H-100 376 251 H-101 373 252 H-102	207	J-59	317	
216 J-69 345 217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416	210			
217 J-7 377 218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 375 250 H-100 376 250 H-101 373 252 H-102 416	212			
218 J-70 356 219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 375 250 H-100 376 250 H-101 373 252 H-102 416	216			
219 J-72 356 221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-9 376 240 J-94 370 243 J-96 364 244 J-94 370 243 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 250 H-101 373 252 H-102 416	217			
221 J-74 349 222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 376 250 H-100 376 251 H-101 373 252 H-102 416	218			
222 J-75 352 224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 376 250 H-100 376 251 H-101 373 252 H-102 416				
224 J-78 359 225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-100 376 250 H-100 376 251 H-101 373 252 H-102 416				
225 J-79 367 227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
227 J-80 359 228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
228 J-81 365 230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
230 J-83 378 231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
231 J-84 375 233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
233 J-87 362 235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
235 J-89 364 236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
236 J-9 376 240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
240 J-93 377 241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				\vdash
241 J-94 370 243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				\vdash
243 J-96 364 246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				\vdash
246 J-99 382 248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				
248 H-1 365 249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				\vdash
249 H-10 375 250 H-100 376 251 H-101 373 252 H-102 416				\vdash
250 H-100 376 251 H-101 373 252 H-102 416	-			\vdash
251 H-101 373 252 H-102 416				\vdash
252 H-102 416				
		-		
	-			\vdash
				· –

	MID TERM	
ID	Label	Pressure
136	J-208	389
137	J-209	368
138	J-21	330
139	J-210	377
145 147	J-217 J-219	394 396
147	J-219 J-22	330
150	J-222	378
151	J-225	382
152	J-226	380
153	J-227	379
154	J-228	382
156	J-23	319
157	J-230	382
158	J-231	376
159	J-232	384
161	J-234	373
162 164	J-235 J-239	373 370
164	J-239 J-24	370
166	J-24 J-240	392
168	J-242	371
169	J-243	375
170	J-244	338
171	J-245	351
172	J-25	319
173	J-26	351
174	J-27	314
175	J-28	342
178	J-30	313
179	J-31	325
180	J-34	314
182	J-36	314 338
183 185	J-37 J-39	338
185	J-39 J-4	366
188	J-41	318
189	J-42	322
190	J-43	343
191	J-44	339
192	J-45	324
195	J-48	324
196	J-49	312
197	J-5	378
201	J-53	314
202	J-54	338
203	J-55 J-58	341 327
200	000	02.
207 210	J-59 J-62	316 332
210	J-62 J-65	331
212	J-69	345
217	J-7	377
218	J-70	356
219	J-72	355
221	J-74	348
222	J-75	352
224	J-78	359
225	J-79	366
227	J-80	359
228 230	J-81 J-83	365 378
230	J-83 J-84	376
233	J-87	362
235	J-89	364
236	J-9	375
240	J-93	377
241	J-94	370
243	J-96	363
246	J-99	381
248	H-1	364
249	H-10	375
	H-100	374
250		-
250 251 252	H-100 H-101 H-102	371 415

	ONG TER	м				r
ID	Label	Pressure		ID .	Label	Pressure
136	J-208	385		136	J-208	385
137	J-209	364		137	J-209	364
138	J-21	329		138	J-21	328
139	J-210	373		139	J-210	373
145	J-217	391		145	J-217	391
147	J-219	392		147	J-219	392
148	J-22	329		148	J-22	328
150	J-222	374		150	J-222	374
151	J-225	378		151	J-225	378
152	J-226	376		152	J-226	376
153	J-227	375		153	J-227	375
154	J-228 J-23	378		154	J-228 J-23	378 317
156 157	J-23 J-230	318 378		156 157	J-23 J-230	317
157	J-230 J-231	370		157	J-230 J-231	378
150	J-231	380		159	J-231	380
161	J-232	369		161	J-232	369
162	J-235	369		162	J-235	369
164	J-239	366		164	J-239	366
165	J-24	331		165	J-24	330
166	J-240	388		166	J-240	388
168	J-242	367		168	J-242	367
169	J-243	371		169	J-243	371
170	J-244	338		170	J-244	338
171	J-245	350		171	J-245	349
172	J-25	318		172	J-25	317
173	J-26	349		173	J-26	348
174	J-27	313		174	J-27	312
175	J-28	341		175	J-28	339
178 179	J-30 J-31	312 324		<u>178</u> 179	J-30 J-31	311 323
179	J-31 J-34	324		179	J-31 J-34	323
182	J-34 J-36	313		180	J-34 J-36	312
183	J-37	336		183	J-37	335
185	J-39	349		185	J-39	348
186	J-4	364		186	J-4	363
188	J-41	317		188	J-41	316
189	J-42	321		189	J-42	321
190	J-43	342		190	J-43	341
191	J-44	339		191	J-44	339
192	J-45	323		192	J-45	322
195	J-48	324		195	J-48	324
196	J-49	311		196	J-49	310
197	J-5	377		197	J-5	375
201	J-53	313		201	J-53 J-54	312
202	J-54 J-55	337 340		202 203	J-54 J-55	336 339
203	J-55	340		203	J-55	326
200	J-58 J-59	315		200	J-58 J-59	315
210	J-62	331		210	J-62	330
212	J-65	330		212	J-65	330
216	J-69	344		216	J-69	343
217	J-7	375		217	J-7	374
218	J-70	355		218	J-70	355
219	J-72	355		219	J-72	355
221	J-74	347		221	J-74	346
222	J-75	351		222	J-75	350
224	J-78	359		224	J-78	359
225	J-79	366		225	J-79	365
227	J-80 J-81	358		227 228	J-80	357
228 230	J-81 J-83	363 377		228	J-81 J-83	363 377
230	J-83	373		230	J-84	373
233	J-87	361		233	J-87	360
235	J-89	363		235	J-89	362
236	J-9	374		236	J-9	372
240	J-93	376		240	J-93	375
241	J-94	369		241	J-94	368
243	J-96	363		243	J-96	363
246	J-99	380		246	J-99	379
248	H-1	360		248	H-1	360
249	H-10	374		249	H-10	373
250	H-100	370		250	H-100	370
251	H-101	367		251	H-101	367
252	H-102 H-103	411		252	H-102 H-103	411
253	n-103	386		253	H-103	386

٢

MID TERM

	EVIOTINO	
ID	EXISTING Label	Pressure
254	H-104	370
255	H-105	380 372
256 257	H-106 H-107	388
258	H-108	369
259	H-109	361
260	H-11	370
261 262	H-110 H-111	360 373
263	H-112	375
264	H-113	377
265 266	H-114 H-115	370 372
267	H-116	375
268	H-117	374
269	H-118 H-119	381
270 271	H-119 H-12	380 352
272	H-120	373
273	H-121	373
274 275	H-122 H-123	374 381
275	H-123 H-124	392
277	H-125	383
278 279	H-126	380
279	H-128 H-129	377 396
281	H-13	352
282	H-130	387
283 284	H-131 H-132	353 365
285	H-132 H-133	354
286	H-134	357
287	H-135	362
288 289	H-136 H-137	376 380
203	H-138	372
291	H-139	367
292 293	H-14 H-140	344 368
293	H-140 H-141	308
295	H-142	373
296	H-143	387
297 298	H-144 H-145	316 344
299	H-146	349
300	H-147	377
301 302	H-148 H-149	371 362
302	H-149 H-15	342
304	H-150	323
305	H-151	333
306 307	H-152 H-153	360 367
308	H-154	370
309	H-155	363
310 311	H-156 H-157	356 325
311 312	H-157 H-158	325
313	H-159	362
314	H-16	350
315 316	H-160 H-161	319 332
317	H-162	362
318	H-163	366
319 320	H-164 H-165	346 356
320	H-165 H-166	330
322	H-167	377
323	H-168	382
324 325	H-169 H-17	385 356
326	H-170	370
327	H-171	379
328 329	H-172	362
329	H-173	319

		4
ID r	Label	M Pressure
254	H-104	368
255	H-105	378
256	H-106	371
257 258	H-107 H-108	386 368
259	H-108	360
260	H-11	370
261	H-110	359
262	H-111	372
263	H-112 H-113	373 375
264 265	H-113 H-114	375
266	H-115	370
267	H-116	374
268	H-117	373
269	H-118	380
270 271	H-119 H-12	379 352
272	H-120	372
273	H-121	372
274	H-122	373
275	H-123	379
276	H-124	390
277 278	H-125 H-126	382 379
278	H-120 H-128	379
280	H-129	394
281	H-13	351
282	H-130	386
283 284	H-131 H-132	352 365
285	H-132 H-133	353
286	H-134	356
287	H-135	361
288	H-136	375
289	H-137	379
290 291	H-138 H-139	371 366
291	H-139	343
293	H-140	366
294	H-141	370
295	H-142	371
296 297	H-143 H-144	386 315
297	H-144 H-145	344
299	H-146	349
300	H-147	377
301	H-148	370
302	H-149	362
303 304	H-15 H-150	341 323
305	H-151	333
306	H-152	359
307	H-153	367
308	H-154	370
309 310	H-155 H-156	363 356
310	H-156 H-157	300
312	H-158	361
313	H-159	361
314	H-16	349
315	H-160	318
316 317	H-161 H-162	331 362
318	H-162	366
319	H-164	345
320	H-165	356
321	H-166	332
322	H-167	375
323 324	H-168 H-169	381 383
324	H-109	355
326	H-170	369
327	H-171	378
328	H-172	362
329	H-173	319

ID	Label	Pressure
254	H-104	367
255	H-105	377
256	H-106	369
257	H-107	385
258	H-108	366
259	H-109	358
260	H-11	370
261	H-110	357
262	H-111	370
263	H-112	372
264	H-112	374
265	H-114	367
266	H-115	369
267	H-116	372
268	H-117	371
269	H-118	378
270	H-119	377
271	H-12	351
272	H-120	370
273	H-121	370
274	H-122	371
274	H-122	378
	-	
276	H-124	389
277	H-125	380
278	H-126	377
279	H-128	374
280	H-129	393
281	H-13	351
282	H-130	384
283	H-131	351
284	H-132	364
285	H-133	352
286	H-134	355
287	H-135	361
288	H-136	373
289	H-137	377
290	H-138	370
291	H-139	364
292	H-14	343
293	H-140	365
294	H-141	368
295	H-142	370
296	H-143	385
297	H-144	315
298	H-145	344
		349
299	H-146	
300	H-147	376
301	H-148	370
302	H-149	361
303	H-15	341
304	H-150	323
305	H-151	333
306	H-152	359
307	H-153	366
308	H-154	369
309	H-155	363
310	H-156	356
311	H-157	324
312	H-158	361
313	H-159	361
314	H-16	349
315	H-160	318
316	H-161	331
317	H-162	362
318	H-163	366
319	H-164	345
320	H-165	356
320	H-165 H-166	330
322	H-167	374
323	H-168	379
324	H-169	382
325	H-17	355
326	H-170	368
327	H-171	376
328	H-172	361
329	H-173	318
		2.5

	ONG TER	
ID 054	Label	Pressure
254 255	H-104 H-105	363 373
256	H-106	365
257	H-107	381
258	H-108	362
259	H-109	354
260	H-11	369
261	H-110	353
262	H-111	366
263	H-112	368
264	H-113	370
265	H-114	363
266	H-115	365
267	H-116	368
268	H-117	367
269	H-118	374
270	H-119	373
271	H-12	350
272	H-120	366
273	H-121	366
274	H-122	368
275	H-123	374
276	H-124	385
277	H-125	376
278	H-126	373
279	H-128	370
280 281	H-129 H-13	389 349
281	H-13 H-130	349
283	H-130	349
284	H-132	362
285	H-133	350
286	H-134	353
287	H-135	358
288	H-136	370
289	H-137	374
290	H-138	366
291	H-139	361
292	H-14	342
293	H-140	361
294	H-141	365
295	H-142	366
296	H-143	381
297	H-144	315
298	H-145	343
299	H-146	348
300	H-147	375
301	H-148	368
302	H-149	360
303	H-15	339
304	H-150	321
305	H-151	331
306	H-152	357
307	H-153	364
308	H-154	369
309	H-155	363
310	H-156	355
311	H-157	324
312 313	H-158 H-159	360 360
313	H-159 H-16	360 347
314	H-16 H-160	347
315	H-160 H-161	330
316	H-161 H-162	330
317	H-162 H-163	361
319	H-163	343
320	H-165	355
320	H-166	330
322	H-167	370
323	H-168	375
323	H-169	378
325	H-17	353
	H-170	364
326		
326 327	H-171	372
		372 359

ΙC		BUILD OU	-
ιL	ID	Label	Pressure
	254	H-104	363
	255	H-105	373
	256	H-106	365
	257	H-107	381
	258	H-108	362
	259	H-109	354
	260	H-11	368
	261	H-110	353
	262	H-111	366
	263	H-112	368
	264	H-113	370
	265	H-114	363
	266	H-115	365
	267	H-116	368
	268	H-117	367
	269	H-118	374
	270	H-119	373
	271	H-12	349
	272	H-120	366
	273	H-121	366
jΓ	274	H-122	368
1 [275	H-123	374
] [276	H-124	385
1 [277	H-125	376
1	278	H-126	373
1	279	H-128	370
1	280	H-129	389
	281	H-13	348
	282	H-130	380
	283	H-131	349
	284	H-132	362
	285	H-133	350
	286	H-134	353
	287	H-135	358
	288	H-136	370
	289	H-137	374
	290	H-138	366
	291	H-139	361
	292	H-14	340
	293	H-140	361
	294	H-141	365
	295	H-142	366
	296	H-143	381
	297	H-144	315
1 -	298	H-145	343
1 -	299	H-146	348
1 -	300	H-147	373
1 -	301	H-148	367
1 -	302	H-149	359
1 -	303	H-15	338
1 -	304	H-150	320
1 -	305	H-151	331
1 -	306	H-152	356
1 -	307	H-153	362
1 -	308	H-154	369
┥┝	309	H-155	362
┥┝	310	H-156	355
1 -	310	H-157	324
┥┝	312	H-157 H-158	359
$+$ \vdash	313	H-159	359
$+$ \vdash	313	H-159	359
┥┝	314	H-160	340
+ $+$	315	H-160	329
┥┝	310	H-161 H-162	329
┥┝	317	H-162 H-163	360
┥┝			
┥┝	319	H-164	342
┥┝	320	H-165	354
┥┝	321	H-166	329
\downarrow	322	H-167	370
╡┝	323	H-168	375
\downarrow L	324	H-169	378
ιL	325	H-17	352
ιL	326	H-170	364
ιL	327	H-171	372
ιL	328	H-172	358
1 1	220	LI 172	215

329 H-173 315

ID Label Pressure 330 H-174 268 331 H-175 325 333 H-177 368 334 H-178 366 335 H-180 352 337 H-181 339 338 H-182 360 339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-198 392 356 H-199 340 357<		EXISTING	
330 H-174 268 331 H-175 325 333 H-177 368 334 H-178 366 335 H-180 352 337 H-181 339 338 H-182 360 339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-187 368 344 H-186 323 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-199 340 355 H-199 340 356 H-199 340 357	ID		Pressure
333 H-177 368 334 H-178 366 335 H-180 352 336 H-180 352 337 H-181 339 338 H-182 360 339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-188 294 345 H-19 357 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-20 342 354 H-197 384 355 H-203 340 356 H-203 343 357	330	H-174	
334 H-178 366 335 H-18 353 336 H-180 352 337 H-181 339 338 H-182 360 339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-201 391 361 H-202 364 362 H-203 365 363			
335 H-18 353 336 H-180 352 337 H-181 339 338 H-182 360 339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-185 355 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-201 391 361 H-202 364 H-203			
336 H-180 352 337 H-181 339 338 H-182 360 339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-197 384 355 H-198 392 356 H-197 384 355 H-198 392 356 H-200 315 360 H-201 391 361 H-202 364 H-203 365 362 363		-	
338 H-182 360 339 H-183 345 340 H-184 336 341 H-186 323 343 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-193 311 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 H-203 365 363 H-210			
339 H-183 345 340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-193 342 353 H-194 248 355 H-193 340 355 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 H-203 365 362 362 H-204 370 364			339
340 H-184 336 341 H-185 355 342 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366			
341 H-185 355 342 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 H-203 365 363 362 H-204 370 364 H-205 372 365 H-207 401 366			
342 H-186 323 343 H-187 368 344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-21 339 369			
344 H-188 294 345 H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 H-203 365 363 366 H-204 370 364 H-205 372 365 H-207 401 366 H-210 357 370 H-211 369 371 H-212 358 372	342		
345H-189 353 346 H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-204 370 364 H-205 372 365 H-204 370 366 H-210 357 370 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-223 375 380 H-223 375 384 H-23 333 386 H-24 378 386 H-25 371 387 H-26 376 394 H-32 327 <t< td=""><td></td><td></td><td></td></t<>			
346H-19 357 347 H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-210 357 366 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-220 356 381 H-223 375 384 H-23 333 385 H-24 377 390 H-33 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328	-		-
347H-190 341 348 H-191 378 349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-208 402 367 H-209 354 368 H-21 339 369 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-220 356 381 H-223 375 384 H-23 333 385 H-24 378 386 H-27 367 399 H-34 328 391 H-36 320 392 H-30 359 393 H-34 328 397 H-34 328 397 H-34 328			
349 H-192 372 350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-210 357 370 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 369 H-210 357 375 H-216 384 376			341
350 H-193 311 351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-204 370 364 H-205 372 365 H-207 401 366 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-217 369 375 H-216 384 376			
351 H-194 248 352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-204 370 366 H-204 370 366 H-205 372 365 H-204 370 366 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375		-	-
352 H-195 293 353 H-196 342 354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-210 357 366 H-210 357 367 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377			-
354 H-197 384 355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-21 339 368 H-21 339 369 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-220 356 381			-
355 H-198 392 356 H-199 340 357 H-2 366 358 H-20 343 359 H-200 315 360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-21 339 369 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-219 350 379 H-22 378 380 H-221 370 382			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
360 H-201 391 361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-208 402 367 H-209 354 368 H-21 339 369 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-219 350 378 H-219 350 379 H-22 38 380 H-220 356 381 H-221 370 382 H-223 375 384 H-23 333 385 H-24 378 386			
361 H-202 364 362 H-203 365 363 H-204 370 364 H-205 372 365 H-207 401 366 H-207 401 366 H-209 354 368 H-21 339 369 H-210 357 370 H-211 369 371 H-212 358 372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-219 350 379 H-22 338 380 H-220 356 381 H-221 370 382 H-223 375 384 H-23 333 385 H-24 378 386			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
372 H-213 362 373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-219 350 379 H-22 338 380 H-220 356 381 H-221 370 382 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-30 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H			
373 H-214 399 374 H-215 395 375 H-216 384 376 H-217 369 377 H-218 352 378 H-219 350 379 H-22 338 380 H-220 356 381 H-221 370 382 H-222 378 383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H			
375 H-216 384 376 H-217 369 377 H-218 352 378 H-219 350 379 H-22 338 380 H-220 356 381 H-221 370 382 H-223 375 383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-3			
376 H-217 369 377 H-218 352 378 H-219 350 379 H-22 338 380 H-220 356 381 H-221 370 382 H-222 378 383 H-223 375 384 H-223 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-3		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
378 H-219 350 379 H-22 338 380 H-220 356 381 H-221 370 382 H-222 378 383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 <td></td> <td></td> <td></td>			
379 H-22 338 380 H-220 356 381 H-221 370 382 H-222 378 383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 <td></td> <td></td> <td></td>			
381 H-221 370 382 H-222 378 383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42	379		
382 H-222 378 383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
383 H-223 375 384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
384 H-23 333 385 H-24 378 386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-40 369 403 H-40 369 404 H-41 317 405 H-42 319			
386 H-25 371 387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319	384	H-23	333
387 H-26 376 388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
388 H-27 367 389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
389 H-28 377 390 H-29 368 391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
391 H-3 377 392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
392 H-30 359 393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			368
393 H-31 336 394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
394 H-32 327 395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
395 H-33 343 396 H-34 328 397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
397 H-35 318 398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317	395		343
398 H-36 320 399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317			
399 H-37 314 400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
400 H-38 312 401 H-39 317 402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319			
402 H-4 341 403 H-40 369 404 H-41 317 405 H-42 319	400	H-38	
403 H-40 369 404 H-41 317 405 H-42 319			
404 H-41 317 405 H-42 319	-		-
405 H-42 319		-	
	-		-
406 H-43 317	406	H-43	317

		4	r
ID r	Label	vi Pressure	ŀ
330	H-174	267	ŀ
331	H-175	324	ŀ
333	H-177	368	ľ
334	H-178	366	ļ
335	H-18	352	ļ
336	H-180	352	ŀ
337 338	H-181 H-182	339 359	ŀ
339	H-162 H-183	345	ŀ
340	H-184	336	ŀ
341	H-185	355	ŀ
342	H-186	323	ľ
343	H-187	368	I
344	H-188	294	ļ
345	H-189	352	ŀ
346 347	H-19 H-190	356 341	ŀ
348	H-190 H-191	378	ŀ
349	H-192	372	ŀ
350	H-193	311	ŀ
351	H-194	248	ſ
352	H-195	293	I
353	H-196	342	ļ
354	H-197	384	ŀ
355	H-198	392	ŀ
356 357	H-199 H-2	340 365	ŀ
358	H-20	343	ŀ
359	H-200	315	ŀ
360	H-201	391	ľ
361	H-202	363	I
362	H-203	363	
363	H-204	369	ļ
364	H-205	371	ŀ
365 366	H-207 H-208	401 402	ŀ
367	H-208	354	ŀ
368	H-21	338	ŀ
369	H-210	357	ŀ
370	H-211	368	ľ
371	H-212	357	
372	H-213	361	ļ
373	H-214	398	ŀ
374 375	H-215 H-216	394 382	ŀ
376	H-217	367	ŀ
377	H-218	351	ŀ
378	H-219	350	ŀ
379	H-22	338	I
380	H-220	355	L
381	H-221	369	ļ
382	H-222	378	ŀ
383 384	H-223 H-23	375 333	ŀ
385	H-23	377	ŀ
386	H-25	371	ţ
387	H-26	376	ţ
388	H-27	367	ſ
389	H-28	377	Ĺ
390	H-29	368	ļ
391	H-3 H-30	376	ŀ
392 393	H-30 H-31	359 336	ŀ
394	H-32	327	ŀ
395	H-33	342	ł
396	H-34	327	ţ
397	H-35	318	ľ
398	H-36	319	ſ
399	H-37	314	ļ
400	H-38	312	ŀ
401 402	H-39 H-4	317 340	ŀ
402	4 H-40	368	ł
404	H-41	317	ł
405	H-42	319	ţ
406	H-43	317	ľ

ID 330 331 333 334		
330 331 333	Label	Pressure
331 333	H-174	266
333		
	H-175	323
334	H-177	367
001	H-178	366
335	H-18	352
336	H-180	351
337	H-181	338
	-	
338	H-182	359
339	H-183	345
340	H-184	336
341	H-185	355
342	H-186	323
343	H-187	368
344	H-188	294
345	H-189	352
346	H-19	356
347	H-190	341
348	H-191	378
349	H-192	372
350	H-193	310
351	H-194	248
352	H-195	293
353	H-196	342
		÷ .=
354	H-197	384
355	H-198	391
356	H-199	340
357	H-2	364
358	H-20	342
359	H-200	315
360	H-201	391
361	H-202	363
362	H-203	362
363	H-204	367
364	H-205	369
365	H-207	401
366	H-208	402
367	H-209	354
368	H-21	338
369	H-210	357
	H-210	368
370		
371	H-212	357
372	H-213	361
373	H-214	396
374	H-215	392
375	H-216	381
010	H-217	001
376		366
376	11.040	366
377	H-218	351
377 378	H-219	351 350
377		351
377 378	H-219	351 350
377 378 379 380	H-219 H-22 H-220	351 350 338 355
377 378 379 380 381	H-219 H-22 H-220 H-221	351 350 338 355 369
377 378 379 380 381 382	H-219 H-22 H-220 H-221 H-222	351 350 338 355 369 378
377 378 379 380 381 382 383	H-219 H-22 H-220 H-221 H-222 H-222	351 350 338 355 369 378 375
377 378 379 380 381 382 383 383 384	H-219 H-22 H-220 H-221 H-222 H-223 H-223	351 350 338 355 369 378 375 333
377 378 379 380 381 382 383 383 384 385	H-219 H-22 H-220 H-221 H-222 H-222	351 350 338 355 369 378 375 333 377
377 378 379 380 381 382 383 383 384	H-219 H-22 H-220 H-221 H-222 H-223 H-223	351 350 338 355 369 378 375 333
377 378 379 380 381 382 383 384 385 386	H-219 H-22 H-220 H-221 H-222 H-223 H-23 H-23 H-24 H-25	351 350 338 355 369 378 375 333 377 371
377 378 379 380 381 382 383 384 385 384 385 386 387	H-219 H-22 H-220 H-221 H-222 H-223 H-23 H-23 H-24 H-25 H-26	351 350 338 355 369 378 375 333 377 371 375
377 378 379 380 381 382 383 384 385 386 386 387 388	H-219 H-22 H-220 H-221 H-222 H-223 H-23 H-23 H-24 H-25 H-26 H-27	351 350 338 355 369 378 375 333 377 371 375 367
377 378 379 380 381 382 383 384 385 386 386 387 388 388 389	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-23 H-24 H-25 H-26 H-27 H-28	351 350 338 355 369 378 375 333 375 371 371 375 367 377
377 378 379 380 381 382 383 384 385 386 387 388 389 390	H-219 H-22 H-220 H-221 H-222 H-223 H-23 H-23 H-24 H-25 H-26 H-27	351 350 338 355 369 378 375 333 377 371 375 367 377 367
377 378 379 380 381 382 383 384 385 386 386 387 388 388 389	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-23 H-24 H-25 H-26 H-27 H-28	351 350 338 355 369 378 375 333 377 371 375 367 377 367 367 374
377 378 379 380 381 382 383 384 385 386 387 388 389 390	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-23 H-24 H-25 H-26 H-27 H-28 H-29	351 350 338 355 369 378 375 333 377 371 375 367 377 367 367 374
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392	H-219 H-22 H-220 H-221 H-222 H-223 H-23 H-23 H-24 H-25 H-26 H-27 H-26 H-27 H-28 H-29 H-3 H-30	351 350 338 355 369 378 375 333 377 371 375 367 377 367 367 374 359
377 378 379 380 381 382 383 384 385 386 387 386 387 388 389 390 391 392 393	H-219 H-22 H-220 H-221 H-222 H-223 H-24 H-25 H-26 H-27 H-28 H-27 H-28 H-29 H-3 H-30 H-31	351 350 338 355 369 378 375 333 377 371 377 371 375 367 377 367 377 367 374 359 336
377 378 379 380 381 382 383 384 385 386 387 386 387 388 389 390 391 392 393 394	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-27 H-28 H-29 H-3 H-30 H-31 H-32	351 350 338 355 369 378 375 333 377 371 377 377 367 377 367 377 367 374 359 336 327
377 378 379 380 381 382 383 384 385 386 387 388 389 390 390 391 392 393 394 395	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-32 H-33	351 350 338 355 369 378 375 333 377 371 375 367 377 367 377 367 374 359 336 327 342
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-27 H-28 H-29 H-3 H-30 H-31 H-32	351 350 338 355 369 378 375 333 377 371 375 367 377 367 377 367 374 359 336 327 327 327
377 378 379 380 381 382 383 384 385 386 387 388 389 390 390 391 392 393 394 395	H-219 H-22 H-220 H-221 H-222 H-223 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-32 H-33	351 350 338 355 369 378 375 333 377 371 375 367 377 367 377 367 374 359 336 327 342
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396 397	H-219 H-22 H-220 H-221 H-223 H-223 H-23 H-23 H-23 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-31 H-33 H-33 H-34 H-35	351 350 338 355 369 378 375 333 377 371 375 367 374 359 336 327 342 327 318
377 378 379 380 381 382 383 384 385 386 387 386 387 388 389 390 391 392 393 394 395 396 397 398	H-219 H-220 H-220 H-221 H-222 H-223 H-23 H-24 H-25 H-26 H-27 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-32 H-33 H-33 H-34 H-35 H-36	351 350 338 355 369 375 333 377 371 375 367 374 359 336 327 342 327 318 319
377 378 379 380 381 382 383 384 385 386 387 386 387 388 389 390 391 392 393 394 395 396 397 398 399	H-219 H-220 H-221 H-222 H-223 H-23 H-23 H-24 H-25 H-26 H-27 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37	351 350 338 355 369 378 375 333 377 371 375 367 367 367 367 367 374 359 336 327 342 327 342 318 319 314
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400	H-219 H-220 H-221 H-222 H-223 H-24 H-25 H-26 H-27 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38	351 350 338 355 369 378 375 333 377 371 375 367 377 377 367 377 367 377 367 377 367 374 359 336 327 342 327 342 327 318 319 314 311
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401	H-219 H-220 H-221 H-222 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38 H-39	351 350 338 355 369 378 375 333 377 371 375 367 377 377 367 374 359 336 327 342 327 318 319 314 311 317
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402	H-219 H-220 H-221 H-222 H-223 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38 H-39 H-4	351 350 338 355 369 378 375 333 377 371 375 367 377 377 367 377 367 377 367 377 367 374 359 336 327 342 327 342 327 318 319 314 311
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403	H-219 H-220 H-221 H-222 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38 H-39	351 350 338 355 369 378 375 333 377 371 375 367 374 359 336 327 318 319 314 317 339 368
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403	H-219 H-220 H-221 H-222 H-223 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38 H-39 H-4	351 350 338 355 369 378 375 333 377 371 375 367 377 367 377 367 377 367 377 367 374 359 336 327 342 327 318 319 314 317 339
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	H-219 H-22 H-220 H-221 H-223 H-223 H-23 H-23 H-23 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38 H-39 H-4 H-40 H-41	351 350 338 355 369 375 333 377 371 375 367 374 359 336 327 342 327 318 319 314 317 339 368 316
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403	H-219 H-220 H-221 H-222 H-223 H-223 H-223 H-24 H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-30 H-31 H-32 H-33 H-34 H-35 H-36 H-37 H-38 H-39 H-4 H-40	351 350 338 355 369 378 375 333 377 371 375 367 374 359 336 327 318 319 314 317 339 368

MID TERM

	ONG TER	
1D 330	Label H-174	Pressure 264
331	H-174	321
333	H-177	365
334	H-178	366
335	H-18	351
336	H-180	350
337	H-181	337
338	H-182	358
339	H-183	344
340	H-184	335
341	H-185	354
342	H-186	323
343	H-187	368
344	H-188	293
345	H-189	352
346	H-19	355
347 348	H-190	341
340	H-191 H-192	378 372
349	H-192 H-193	312
351	H-193 H-194	248
352	H-194	293
353	H-196	341
354	H-190 H-197	383
355	H-197	391
356	H-190	340
357	H-2	360
358	H-20	341
359	H-200	314
360	H-201	391
361	H-202	363
362	H-203	358
363	H-204	363
364	H-205	365
365	H-207	401
366	H-208	402
367	H-209	353
368	H-21	336
369	H-210	356
370	H-211	367
371	H-212	355
372	H-213	359
373 374	H-214 H-215	392
374	H-215 H-216	388 377
375	H-210 H-217	362
377	H-217	350
378	H-219	349
379	H-22	337
380	H-220	354
381	H-221	369
382	H-222	377
383	H-223	375
384	H-23	332
385	H-24	376
386	H-25	370
387	H-26	374
388	H-27	366
389	H-28	376
390	H-29	366
391	H-3	370
392	H-30	359
393	H-31	336
394	H-32	326
395	H-33	341 325
396 397	H-34 H-35	325 316
397 398	H-35 H-36	316
398	H-30 H-37	313
400	H-37	313
400	H-30	316
402	H-4	337
403	H-40	367
	H-41	315
404	1+ 1	515
404 405	H-42	317

		BUILD OU	
e	ID	Label	Pressure
_	330	H-174	263
_	331 333	H-175 H-177	320 364
_	333	H-177	365
_	335	H-178	350
_	336	H-180	349
_	337	H-181	336
	338	H-182	357
	339	H-183	343
_	340	H-184	334
	341	H-185	353
_	342	H-186	322
_	343	H-187	368
	344	H-188	293
	345	H-189	352
	346	H-19	353
	347	H-190	341
	348	H-191	378
	349	H-192	371
	350	H-193	310
	351	H-194	248
	352	H-195	293
	353	H-196	341
	354	H-197	383
	355	H-198	391
	356	H-199	340
	357	H-2	360
	358	H-20	340
	359	H-200	314
	360	H-201	390
	361	H-202	363
	362	H-203	358
	363	H-204	363
	364	H-205	365
	365	H-207	401
	366	H-208	401
	367	H-209	352
	368	H-21	335
	369	H-210	355
	370	H-211	366
	371	H-212	353
	372	H-213	357
	373	H-214	392
	374	H-215	388
	375	H-216	377
	376	H-217	362
	377	H-218	349
	378	H-219	348
	379	H-22	336
	380	H-220	353
	381	H-221	369
_	382	H-222	377
4	383	H-223	374
4	384	H-23	331
4	385	H-24	375
4	386	H-25	369
_	387	H-26 H-27	374
_	388	H-27 H-28	365
-	389 390	H-28 H-29	375
_	390 391	H-29 H-3	366
-	391	H-3 H-30	370 359
-	392	H-30 H-31	359
-	393	H-31	326
-	394	H-32	320
-	395	H-33	324
-	396	H-34 H-35	324
-	397	H-35	315
-	398	H-30	317
-	400	H-37	312
-	400	H-30	316
-	401	H-4	337
-	402	H-40	366
-	403	H-40	315
1	-	H-42	315
	405		

	EXISTING	
ID	Label	Pressure
407	H-44	379
408	H-45	347
409	H-46	345
410 411	H-47 H-48	376
411	н-40 H-49	366 344
413	H-5	350
414	H-50	354
415	H-51	363
416	H-52	367
417	H-53	368
418 419	H-54 H-55	376 377
419	H-55 H-56	371
421	H-57	362
422	H-58	360
423	H-59	357
424	H-60	353
425	H-61	349
426 427	H-62	347
427	H-63 H-64	348 368
420	H-65	366
430	H-66	365
431	H-67	363
432	H-68	369
433	H-69	362
434	H-7	366
435	H-70	364
436 437	H-71 H-72	369 365
437	H-73	365
439	H-74	369
440	H-75	349
441	H-76	398
442	H-77	299
443	H-78	303
444 445	H-79	364
445	H-8 H-80	370 364
440	H-81	359
448	H-82	366
449	H-83	363
450	H-84	341
451	H-85	369
452 453	H-86	373
454	H-87	377
454 455	H-88 H-89	371 329
456	H-9	362
457	H-90	330
458	H-91	340
459	H-92	374
460 461	H-93	382 394
461	H-94 H-95	394 380
462	H-95 H-96	383
403	H-97	379
465	H-98	379
466	H-99	381
977	J-246	356
982	J-247	367
983	J-248 J-254	367
1019 1030	J-254 J-257	369 368
1030	J-257	308
1050	J-260	323
1066	J-262	396
1069	J-263	304
1075	J-264	369
1185	J-288	368
1209	J-290	365
1213 1219	J-291 J-292	361 357
1213	0-232	557

	NEAR TER		F
1D 407	Label H-44	Pressure	_
407	H-44 H-45	379 347	-
409	H-46	345	-
410	H-47	375	
411	H-48	365	
412	H-49	344	_
413	H-5	350	_
414 415	H-50 H-51	353 362	-
415	H-51 H-52	366	-
417	H-53	368	-
418	H-54	376	-
419	H-55	376	
420	H-56	371	
421	H-57	362	
422	H-58	359	
423	H-59	356	_
424	H-60	352	_
425 426	H-61 H-62	349 347	_
420	H-62	347	_
428	H-64	367	-
429	H-65	365	-
430	H-66	365	
431	H-67	362	
432	H-68	368	
433	H-69	361	L
434	H-7	366	L
435	H-70	363	
436	H-71	369	_
437 438	H-72 H-73	365 364	_
439	H-74	368	
440	H-75	349	
441	H-76	397	
442	H-77	298	
443	H-78	303	
444	H-79	363	
445	H-8	369	
446	H-80	363	
447 448	H-81 H-82	358 365	-
440	H-83	361	
450	H-84	340	
451	H-85	368	-
452	H-86	372	
453	H-87	376	
454	H-88	370	
455	H-89	329	
456	H-9	362	
457	H-90	330	_
458 459	H-91 H-92	340 373	⊢
459	H-92 H-93	373	⊢
461	H-94	393	⊢
462	H-95	379	F
463	H-96	382	
464	H-97	378	Ľ
465	H-98	377	
466	H-99	380	L
977	J-246	356	F
982 983	J-247 J-248	365 365	⊢
1019	J-248 J-254	365	┝
1019	J-254 J-257	368	┢
1036	J-258	324	F
1050	J-260	323	F
1066	J-262	395	
1069	J-263	300	E
1075	J-264	368	
1154	J-270	343	L
1155	J-271	333	L
1156	J-272	333	⊢
1157	J-273	372 382	⊢
1158 1160	J-274 J-276	403	⊢
1100	J-270	400	L

		1
ID	Label	Pressure
407	H-44	378
408	H-45	346
409	H-46	344
410	H-47	375
411 412	H-48 H-49	365 344
412	H-5	350
414	H-50	353
415	H-51	362
416	H-52	366
417	H-53	367
418	H-54	375
419	H-55	376
420	H-56	370
421	H-57	361
422 423	H-58 H-59	359 356
423	H-60	352
425	H-61	348
426	H-62	346
427	H-63	347
428	H-64	366
429	H-65	365
430	H-66	364
431	H-67	362
432	H-68	367
433 434	H-69 H-7	361
434	H-7	366 363
436	H-71	368
437	H-72	365
438	H-73	364
439	H-74	368
440	H-75	348
441	H-76	395
442	H-77	298
443	H-78	302
444	H-79	361
445 446	H-8 H-80	369 361
440	H-80	356
448	H-82	363
449	H-83	360
450	H-84	338
451	H-85	366
452	H-86	370
453	H-87	374
454	H-88	368
455	H-89	328
456	H-9	362
457 458	H-90 H-91	329 340
458	H-91 H-92	340 371
459	H-92 H-93	379
461	H-94	391
462	H-95	377
463	H-96	380
464	H-97	376
465	H-98	376
466	H-99	378
977	J-246	356
982	J-247	364
983 1019	J-248 J-254	364
1019	J-254 J-257	368 367
1030	J-257	323
1050	J-260	323
1066	J-262	393
1069	J-263	300
1075	J-264	368
1151	J-267	347
1154	J-270	342
1155	J-271	332
1156	J-272	332
1157	J-273	372
1158	J-274	382

		\ A	·		T
	ONG TERI	vi Pressure	ID	BUILD OU Label	
407	H-44	377	407		f
408	H-45	345	408	6 H-45	T
409	H-46	343	409		
410	H-47	374	410		-
411 412	H-48 H-49	364 343	411	-	+
413	H-5	348	413	-	t
414	H-50	352	414		T
415	H-51	361	415		
416	H-52	365	416	-	
417 418	H-53 H-54	366 374	417		+
419	H-55	374	419		t
420	H-56	369	420		t
421	H-57	360	421		
422	H-58	358	422		
423 424	H-59 H-60	354 350	423		
425	H-61	347	424		┢
426	H-62	345	426		t
427	H-63	346	427		
428	H-64	364	428		
429 430	H-65 H-66	363 362	429		
430	H-60 H-67	362	430		┢
432	H-68	365	432		t
433	H-69	359	433		
434	H-7	365	434		
435 436	H-70	361	435	-	+
436	H-71 H-72	366 363	436		┢
438	H-73	363	438		t
439	H-74	367	439) H-74	Ī
440	H-75	347	440		
441 442	H-76	392	441 442	-	
442	H-77 H-78	297 301	442		┢
444	H-79	357	444	-	t
445	H-8	368	445	-	
446	H-80	357	446		
447 448	H-81 H-82	352 359	447 448	-	+
440	H-83	356	440		t
450	H-84	334	450		T
451	H-85	362	451		
452	H-86	367	452		
453 454	H-87 H-88	371 365	453 454		+
455	H-89	326	455		t
456	H-9	361	456		İ
457	H-90	328	457		
458	H-91	338 368	458		
459 460	H-92 H-93	300	459		┢
461	H-94	387	461		t
462	H-95	373	462		
463	H-96	376	463		Ļ
464 465	H-97 H-98	372 372	464		+
466	H-99	375	460		┢
977	J-246	355	977		t
982	J-247	360	982	-	
983	J-248	360	983		
1019 1030	J-254 J-257	367 365	101		┞
1030	J-257	305	103		┢
1050	J-260	323	105		t
1066	J-262	389	106		ſ
1069	J-263	300	106		L
1075 1151	J-264 J-267	367 345	107		┞
1152	J-268	389	115		┢
1153	J-269	389	115		t
1154	J-270	340	115		L
1155	J-271	331	115		Ļ
1156	J-272	331	115	6 J-272	L

Pressure

375

344

342

373

363

342 347

351

360

364

364

372 373

367 358

356

353

349 346

344 345

363 362

361

358 364

357

364

359

365

362

362

366

346 392

297

301

357

367

357 352

359 356

334

362

367

371 365

326

360

328 338

368 375

387

373 376

372

372

375

355

360

360

366

364

320

322

389

299 366

344

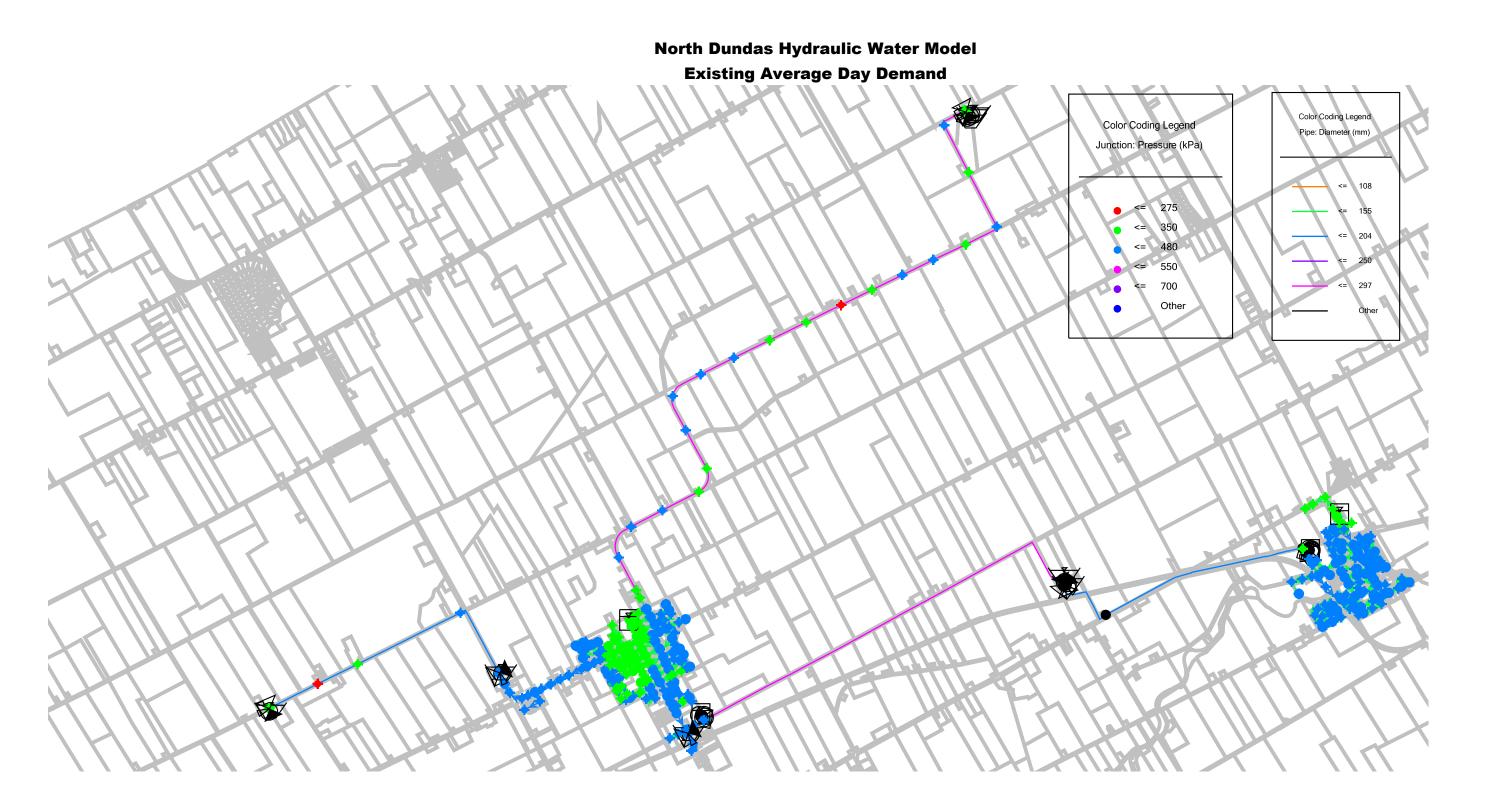
388

388

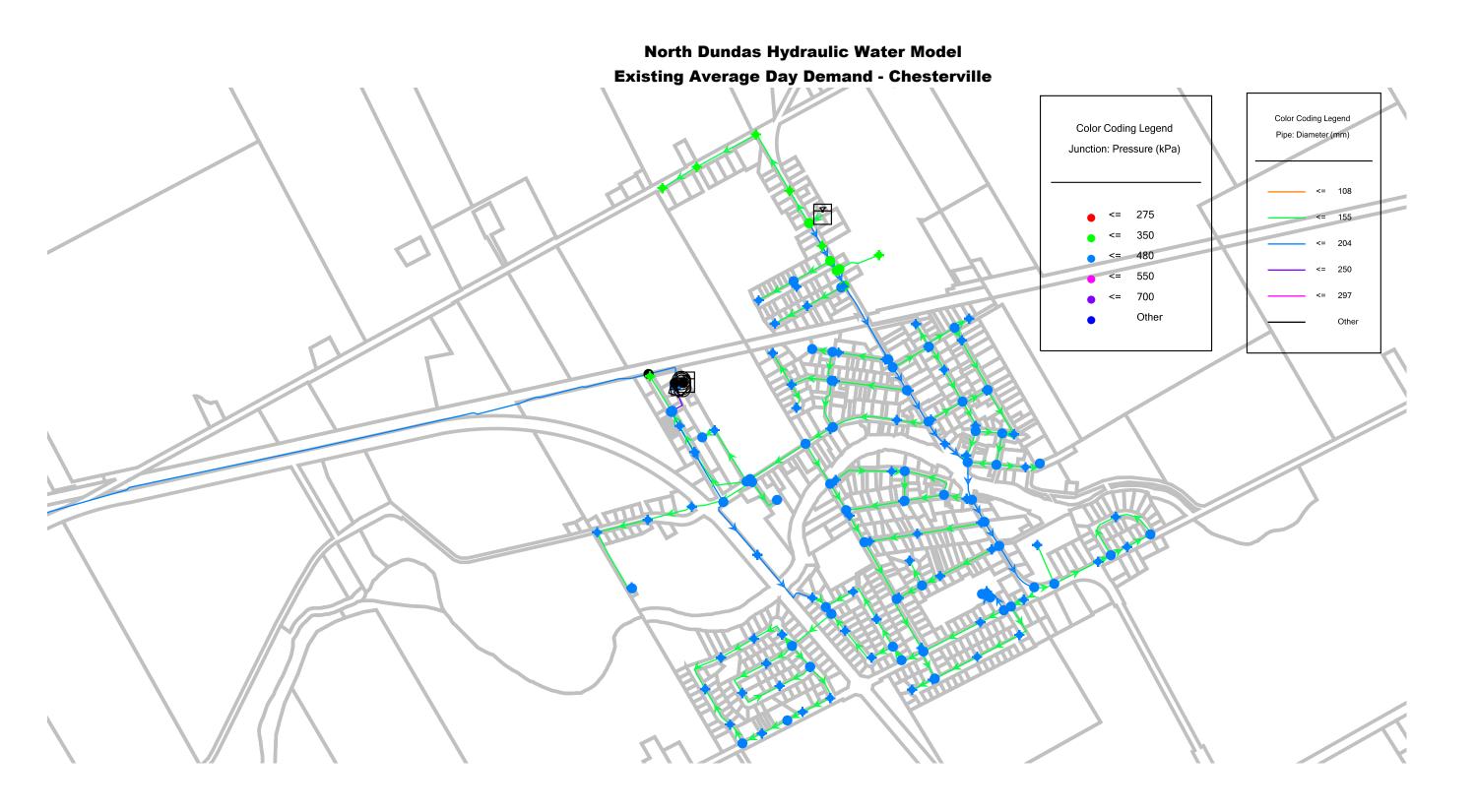
339

329

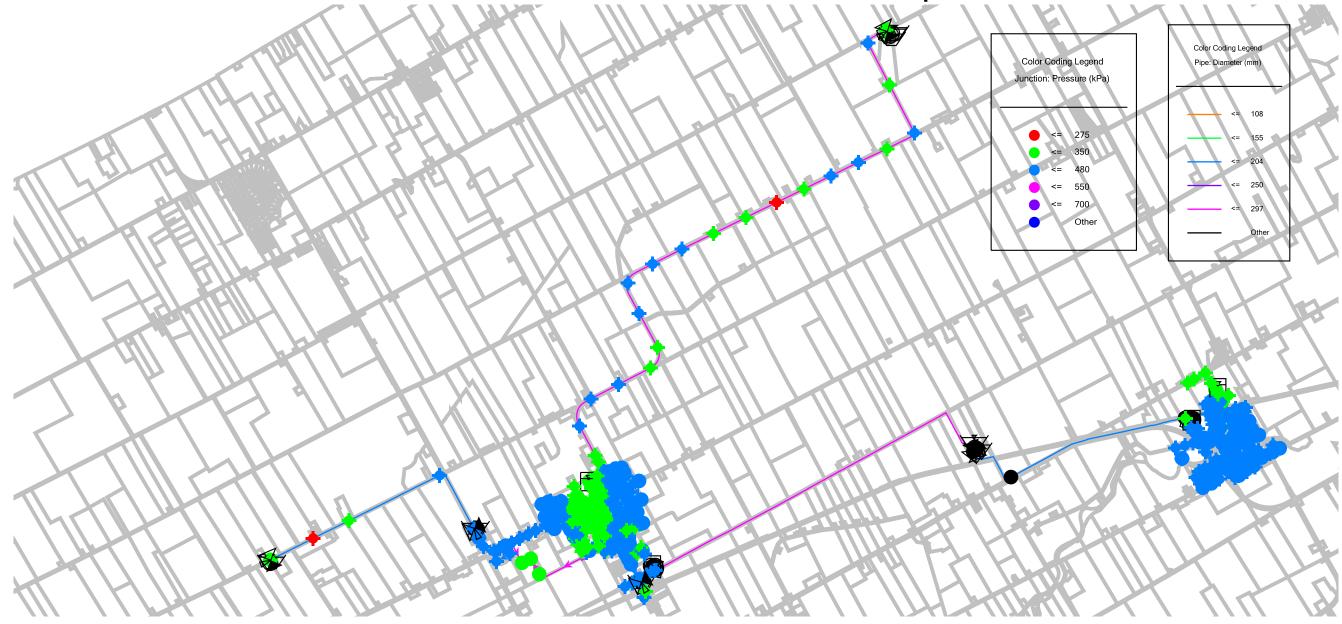
329

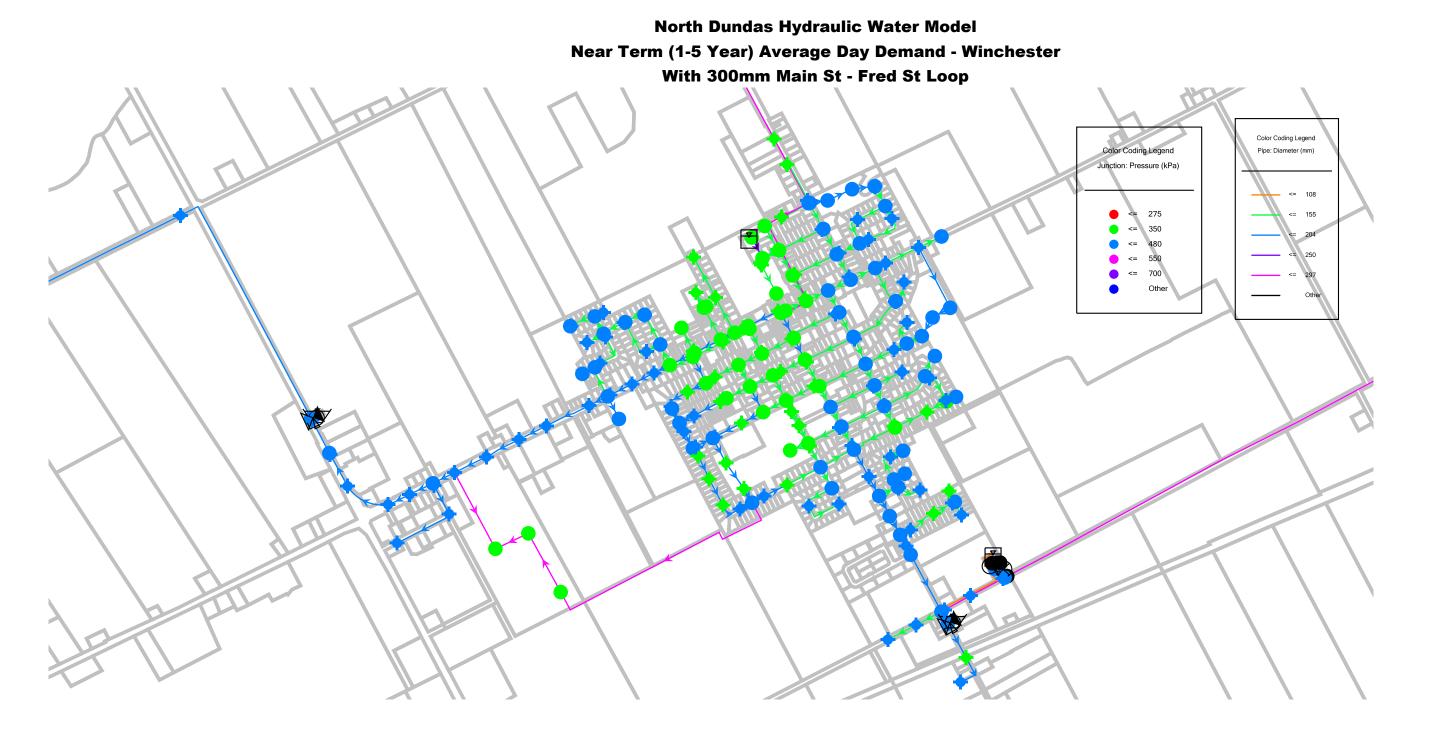

EXISTING		
ID	Label	Pressure

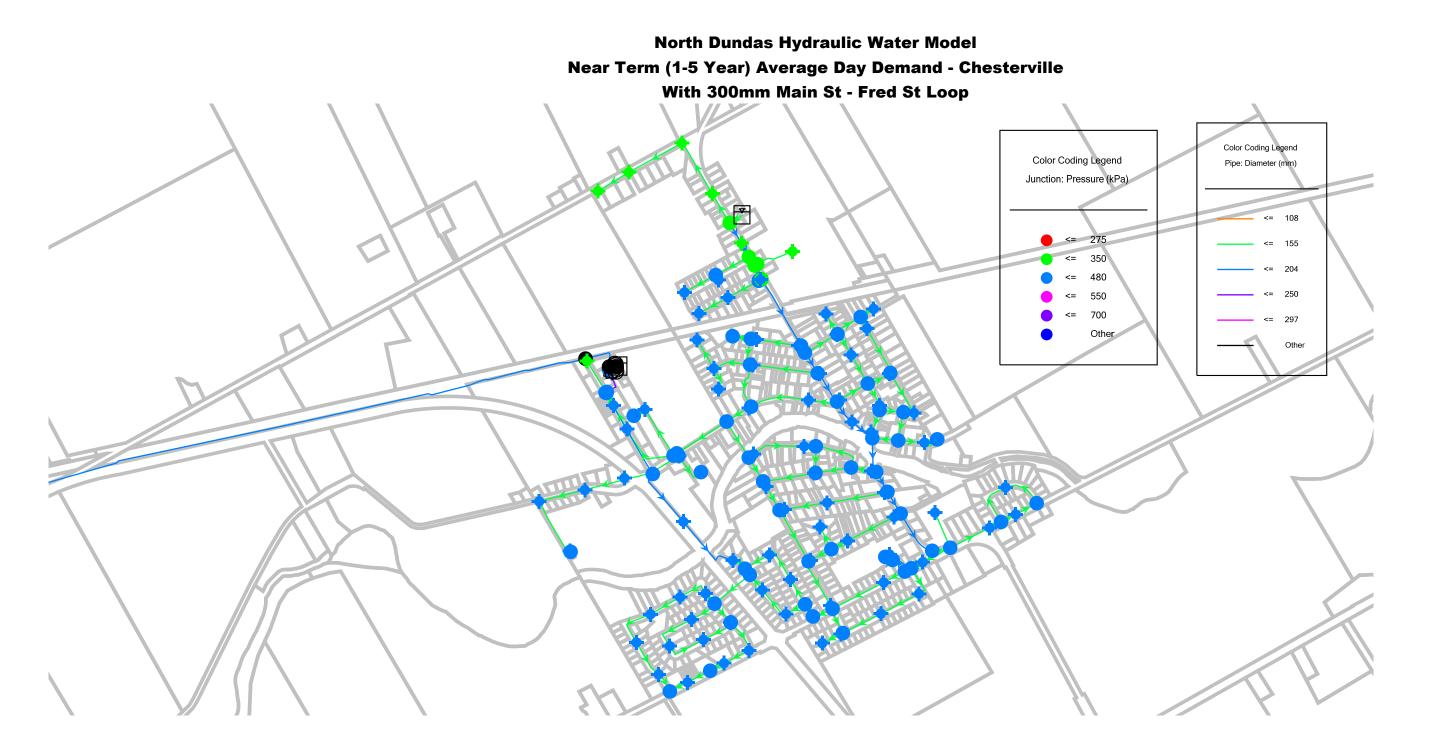
NEAR TERM		
ID	Label	Pressure
1161	J-277	403
1163	J-279	392
1164	J-280	392
1185	J-288	368
1209	J-290	364
1213	J-291	361
1219	J-292	356

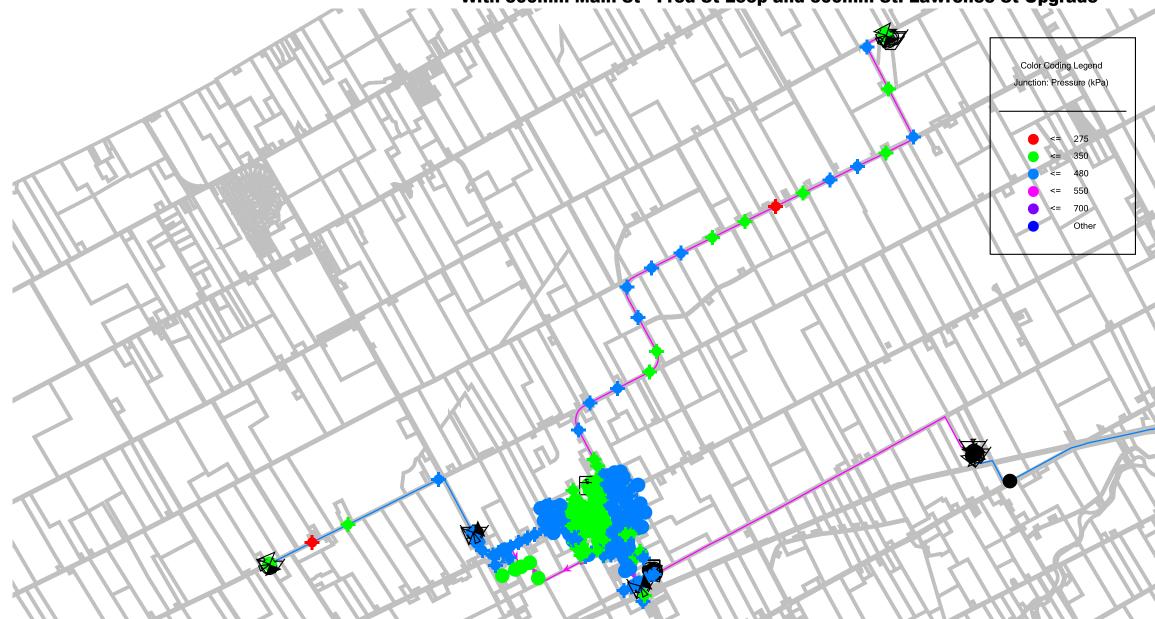

	MID TERM		
ID	Label	Pressure	
1160	J-276	402	
1161	J-277	402	
1163	J-279	392	
1164	J-280	392	
1165	J-281	392	
1169	J-285	392	
1171	J-287	342	
1185	J-288	367	
1209	J-290	364	
1213	J-291	361	
1219	J-292	356	

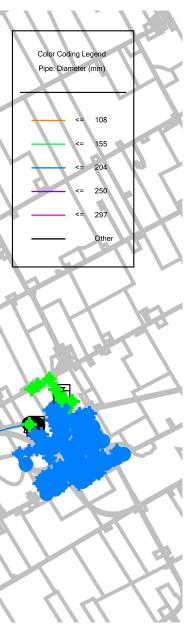
LONG TERM			
ID	Label	Pressure	
1157	J-273	370	
1158	J-274	380	
1160	J-276	402	
1161	J-277	402	
1163	J-279	391	
1164	J-280	391	
1165	J-281	391	
1166	J-282	386	
1169	J-285	391	
1170	J-286	400	
1171	J-287	340	
1185	J-288	366	
1209	J-290	363	
1213	J-291	360	
1219	J-292	354	


	BUILD OUT		
ID	Label	Pressure	
1157	J-273	369	
1158	J-274	379	
1159	J-275	398	
1160	J-276	402	
1161	J-277	402	
1162	J-278	380	
1163	J-279	390	
1164	J-280	390	
1165	J-281	390	
1166	J-282	385	
1167	J-283	360	
1168	J-284	399	
1169	J-285	390	
1170	J-286	399	
1171	J-287	339	
1185	J-288	365	
1205	J-289	370	
1209	J-290	362	
1213	J-291	359	
1219	J-292	353	

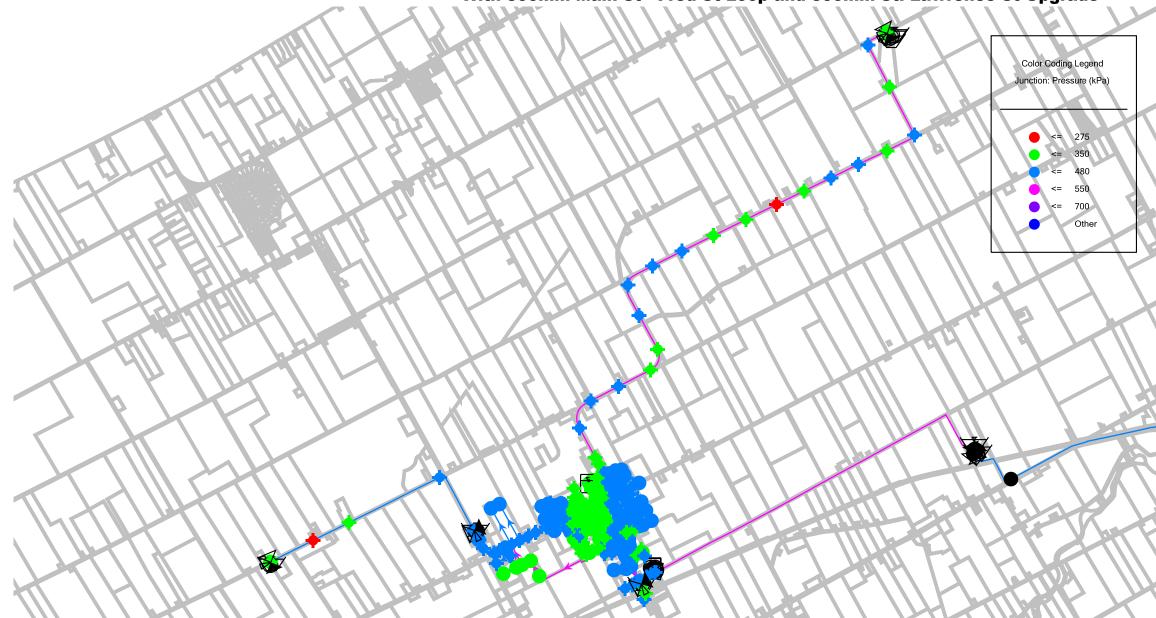


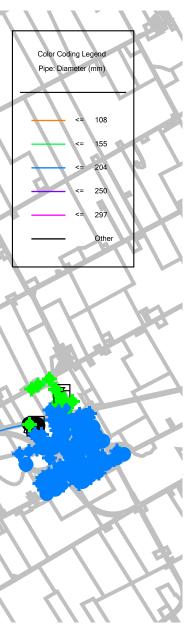



North Dundas Hydraulic Water Model Near Term (1-5 Year) Average Day Demand With 300mm Main St - Fred St Loop

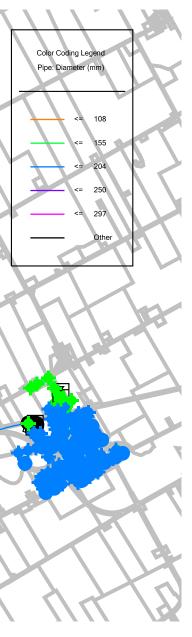


North Dundas Hydraulic Water Model Mid Term (5-10 Year) Average Day Demand With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade





North Dundas Hydraulic Water Model Long Term (10-20 Year) Average Day Demand With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade



North Dundas Hydraulic Water Model Build Out (20+ Year) Average Day Demand With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade

	EXISTING	
ID	Label	Pressure
30	J-1	388
33	J-101	382
34	J-102	370
35 36	J-103 J-104	377 380
30	J-104 J-105	440
41	J-109	382
42	J-11	369
43	J-111	439
44	J-112	370
45	J-113	377
46	J-114	436
47	J-116	467
48	J-117	429
49 50	J-118 J-119	435 374
50	J-119 J-12	374
52	J-120	375
55	J-123	386
56	J-124	384
57	J-125	530
58	J-126	366
60	J-129	369
61	J-13	376
63	J-131	457
64 66	J-132	376 369
69	J-135 J-14	369
70	J-14	385
72	J-142	381
73	J-143	381
74	J-144	377
76	J-146	377
77	J-147	388
79	J-149	372
80	J-15	357
81	J-150	378
82 83	J-151	377 377
85	J-152 J-154	394
87	J-157	369
89	J-159	384
90	J-16	365
91	J-160	354
92	J-162	373
93	J-163	324
95	J-165	379
96 97	J-167 J-168	375 382
100	J-168 J-170	421
100	J-170	340
101	J-172	380
103	J-173	375
104	J-174	370
105	J-175	377
106	J-176	346
107	J-177	346
108	J-178	357
109 110	J-18 J-180	344 351
111	J-180 J-182	378
112	J-182	381
113	J-187	369
114	J-188	369
115	J-189	381
117	J-191	380
118	J-192	378
119	J-193	385
120	J-194	398
121 125	J-195 J-199	374 381
125	J-199 J-20	362
127	J-20	378
132	J-200	382
133	J-205	370

N	IEAR TER	M	Γ
ID	Label		
30	J-1	380	Ļ
33	J-101	378	
34 35	J-102 J-103	369 376	⊢
36	J-103	378	_
37	J-104	436	_
41	J-109	377	-
42	J-11	364	
43	J-111	436	
44	J-112	366	
45	J-113	375	
46	J-114	433	
47	J-116	464	_
48 49	J-117 J-118	425 431	_
50	J-119	368	_
51	J-12	374	
52	J-120	369	
55	J-123	382	
56	J-124	380	
57	J-125	528	
58	J-126	366	
60	J-129	364	
61 63	J-13 J-131	372 454	H
64	J-131 J-132	454 372	_
66	J-132 J-135	368	⊢
69	J-14	357	
70	J-140	383	F
72	J-142	379	
73	J-143	379	
74	J-144	375	
76	J-146	375	
77	J-147	386	
79	J-149	370	_
80 81	J-15 J-150	353 376	_
82	J-150 J-151	376	-
83	J-152	376	-
85	J-154	393	-
87	J-157	367	
89	J-159	382	
90	J-16	361	
91	J-160	353	
92	J-162	372	
93	J-163	324	_
95 96	J-165 J-167	377 373	
96 97	J-167 J-168	373	-
100	J-170	419	_
100	J-170	339	┢
102	J-172	378	F
103	J-173	374	
104	J-174	369	
105	J-175	375	
106	J-176	345	
107	J-177	345	F
108	J-178	356 341	H
109 110	J-18 J-180	341 350	⊢
110	J-180 J-182	376	⊢
112	J-183	379	⊢
113	J-187	368	F
114	J-188	367	F
115	J-189	379	
117	J-191	379	
118	J-192	376	
119	J-193	383	L
120	J-194	396	L
121 125	J-195 J-199	372 379	⊢
125	J-199 J-20	379 358	⊢
127	J-20 J-200	358	⊢
132	J-200	380	┢
133	J-205	369	┢
135	J-207	377	F

ID	Label	Pressure	
30	J-1	379	
33	J-101	378	-
34	J-102	372	-
35	J-102	378	-
36	J-103	380	-
37	J-104	394	-
-			-
41	J-109	374	_
42	J-11	366	_
43	J-111	393	
44	J-112	360	
45	J-113	379	
46	J-114	391	
47	J-116	396	
48	J-117	383	
49	J-118	389	
50	J-119	372	
51	J-12	377	
52	J-120	373	
55	J-123	377	
56	J-124	373	
57	J-125	405	
58	J-126	370	
60	J-120	359	⊢⊢
61	J-129 J-13	374	⊢⊢
63	J-13 J-131	374	⊢⊢
			⊢⊢
64	J-132	367	⊢⊢
66	J-135	369	⊢⊢
69	J-14	360	ļĻ
70	J-140	379	L
72	J-142	375	
73	J-143	375	
74	J-144	371	
76	J-146	371	
77	J-147	382	
79	J-149	366	
80	J-15	355	
81	J-150	372	
82	J-151	372	
83	J-152	372	
85	J-154	389	
87	J-157	363	-
89	J-159	378	-
90	J-16	362	-
91	J-160	351	-
92		368	-
92	J-162 J-163	300	-
			-
95	J-165	373	_
96	J-167	370	
97	J-168	376	_
100	J-170	416	
101	J-171	337	L
102	J-172	374	L
103	J-173	370	L
104	J-174	365	L
105	J-175	372	L
106	J-176	343	
107	J-177	343	ſ
108	J-178	354	Γ
109	J-18	343	Γ
110	J-180	347	
111	J-182	373	
112	J-183	375	
113	J-187	364	-
114	J-188	364	
115	J-189	375	
117	J-191	375	⊢⊢
118	J-191	373	⊢⊢
119	J-192 J-193	380	⊢⊢
120	J-193 J-194	392	⊢⊢
-			⊢⊢
121	J-195	369	⊢⊢
125	J-199	376	⊢⊢
127	J-20	359	⊢⊢
128	J-200	373	ļĻ
132	J-204	377	
133	J-205	366	L
135	J-207	373	L

MID TERM

L	ONG TER	N
ID	Label	Pressure
30 33	J-1	370 373
33 34	J-101 J-102	373
35	J-102	376
36	J-104	378
37	J-105	388
41	J-109	369
42 43	J-11 J-111	360 387
43	J-112	355
45	J-113	375
46	J-114	384
47	J-116	389
48 49	J-117 J-118	377 383
49 50	J-110 J-119	368
51	J-12	371
52	J-120	369
55	J-123	371
56 57	J-124 J-125	369
57 58	J-125 J-126	397 366
60	J-120 J-129	353
61	J-13	368
63	J-131	378
64	J-132	361
66 69	J-135 J-14	369 354
69 70	J-14 J-140	354 367
72	J-142	362
73	J-143	362
74	J-144	358
76	J-146	359
77 79	J-147 J-149	369 353
80	J-149 J-15	350
81	J-150	360
82	J-151	359
83	J-152	359
85 87	J-154 J-157	376 350
89	J-159	365
90	J-16	357
91	J-160	345
92	J-162	356
93 95	J-163 J-165	319 359
96	J-167	358
97	J-168	363
100	J-170	403
101	J-171	331
102 103	J-172 J-173	361 359
103	J-173 J-174	359
105	J-175	360
106	J-176	336
107	J-177	336
108 109	J-178 J-18	346 338
109	J-18 J-180	338 340
110	J-182	360
112	J-183	363
113	J-187	353
114	J-188	353
115 117	J-189 J-191	362 363
117	J-191 J-192	359
119	J-193	367
120	J-194	380
121	J-195	357
125 127	J-199 J-20	363 353
127	J-20 J-200	353
132	J-200	365
133	J-205	354
135	J-207	361

	BUILD OU	
ID		Pressure
30	J-1	366
33	J-101	370
34	J-102	366
35	J-103	376
36	J-104	378
37	J-105	383
41	J-109	366
42	J-11	356
43	J-111	383
44	J-112	352
45	J-113	373
46	J-114	380
47	J-116	382
48	J-117	373
49	J-118	378
50	J-119	365
51	J-12	367
52	J-120	365
55	J-123	368
56	J-124	365
57	J-125	391
58	J-126	363
60	J-120	350
61	J-123	364
63	J-131	368
64	J-131	308
66	J-132 J-135	368
69	J-135 J-14	350
70	J-140	367
70	J-140 J-142	362
72	J-142 J-143	362
73		
	J-144	358
76	J-146	359
77	J-147	369
79	J-149	353
80	J-15	346
81	J-150	360
82	J-151	359
83	J-152	359
85	J-154	376
87	J-157	350
89	J-159	365
90	J-16	354
91	J-160	345
92	J-162	356
93	J-163	319
95	J-165	359
96	J-167	358
97	J-168	363
100	J-170	403
101	J-171	331
102	J-172	361
103	J-173	359
104	J-174	354
105	J-175	360
106	J-176	336
107	J-177	336
108	J-178	346
109	J-18	335
110	J-180	340
111	J-182	360
112	J-183	363
113	J-187	353
114	J-188	353
115	J-189	362
117	J-191	363
118	J-192	359
119	J-192	367
120	J-193 J-194	380
120	J-194 J-195	360
125	J-199	363
127	J-20	350
128	J-200	360
132	J-204	365
133	J-205	354 361
135	J-207	

r	EXISTING	
ID	Label	Pressure
136	J-208	395
137	J-209	373
138 139	J-21 J-210	339 383
145	J-217	400
147	J-219	402
148 150	J-22 J-222	338 384
150	J-225	388
152	J-226	386
153	J-227	385
154 156	J-228 J-23	388 326
157	J-230	388
158	J-231	382
159 161	J-232 J-234	389
161	J-234 J-235	380 379
164	J-239	377
165	J-24	341
166 168	J-240 J-242	397 377
169	J-242 J-243	381
170	J-244	338
171	J-245	526
172 173	J-25 J-26	326 362
174	J-20	322
175	J-28	352
178	J-30	320
179 180	J-31 J-34	334 321
182	J-36	322
183	J-37	348
185	J-39	362
186 188	J-4 J-41	382 326
189	J-42	322
190	J-43	354
191 192	J-44 J-45	340 334
192	J-48	326
196	J-49	317
197	J-5	387
201 202	J-53 J-54	318 349
203	J-55	358
206	J-58	329
207	J-59	323
210 212	J-62 J-65	340 335
212	J-69	363
217	J-7	386
218 219	J-70 J-72	358 358
219	J-72 J-74	360
222	J-75	371
224	J-78	361
225 227	J-79 J-80	371 375
227	J-80 J-81	375
230	J-83	380
231	J-84	381
233 235	J-87 J-89	382 368
236	J-9	384
240	J-93	385
241	J-94	404
243 246	J-96 J-99	366 393
248	H-1	369
249	H-10	431
250 251	H-100 H-101	380 378
251	H-101 H-102	421
253	H-103	396

	EAR TER	/I Pressure	
136	J-208	393	1
137	J-200	393	
138	J-200	335	
139	J-210	381	
145	J-217	399	1
147	J-219	400	
148	J-22	335	
150	J-222	382	1
151	J-225	387	1
152	J-226	385	1
153	J-227	383	1
154	J-228	387	1
156	J-23	323	1
157	J-230	386	1
158	J-231	381	1
159	J-232	388	1
161	J-234	378	1
162	J-235	378	1
164	J-239	375	1
165	J-24	337	1
166	J-240	396	1
168 169	J-242 J-243	375 379	1
169	J-243 J-244	379	
170	J-244 J-245	524	
172	J-240	323	
173	J-25	357	
174	J-27	318	
175	J-28	348	
178	J-30	317	1
179	J-31	330	1
180	J-34	318	1
182	J-36	318	1
183	J-37	344	1
185	J-39	357	1
186	J-4	374	1
188	J-41	323	1
189	J-42	321	1
190	J-43	350	1
191	J-44	340	1
192	J-45	330	
195 196	J-48 J-49	325 315	
190	J-49 J-5	383	
201	J-53	316	2
201	J-54	345	2
203	J-55	354	2
206	J-58	328	
207	J-59	320	2
210	J-62	337	2
212	J-65	334	2
216	J-69	358	2
217	J-7	381	2
218	J-70	357	2
219	J-72	357	2
221	J-74	356	2
222	J-75	367	2
224	J-78	361	2
225	J-79	370	2
227	J-80	371 379	2
228 230	J-81 J-83	379 379	2
230	J-83 J-84	379	2
231	J-84 J-87	378	2
235	J-89	367	2
236	J-9	380	2
240	J-93	382	2
241	J-94	400	2
243	J-96	365	2
246	J-99	389	2
248	H-1	368	2
249	H-10	427	2
250	H-100	379	2
251	H-101	376	2
252	H-102	419	2
253	H-103	394	2

	MID TERM		
ID	Label	Pressure	
136	J-208	390	
137	J-209	369	
138	J-21	338	
139	J-210	378	
145	J-217	395	
147	J-219	397	
148	J-22	337	
150	J-222	379	
151	J-225	383	
152	J-226	381	
153	J-227	380	
154	J-228	383	
156	J-23	326	
157	J-230	383	
158	J-231	377	
159	J-232	384	
161	J-234	374	
162	J-235	374	
164	J-239	372	
165	J-24	339	
166	J-240	392	
168	J-242	372	
169	J-243	376	
170	J-244	338	
171	J-245	401	
172	J-25	326	
173	J-26	359	
174	J-27	321	
175	J-28	350	
178	J-30	320	
179	J-31	333	
180	J-34	321	
182	J-36	321	
183	J-37	346	
185	J-39	358	
186	J-4	374	
188	J-41	326	
189	J-42	322	
190	J-43	351	
191	J-44	341	
192	J-45	333	
195	J-48	326	
196	J-49	318	
197	J-5	385	
201	J-53	320	
202	J-54	347	
203	J-55	352	
206	J-58	330	
207	J-59	324	
210	J-62	341	
212	J-65	337	
216	J-69	357	
217	J-7	384	
218	J-70	358	
219	J-72	358	
221	J-74	359	
222	J-75	364	
224	J-78	362	
225	J-79	373	
227	J-80	372	
228	J-81	377	
230	J-83	381	
231	J-84	382	
233	J-87	376	
235	J-89	370	
236	J-9	382	
240	J-93	386	
241	J-94	387	
243	J-96	366	
246	J-99	392	
248	H-1	364	
249	H-10	398	
250	H-100	375	
	H-101	373	
251	11-101	010	
251 252	H-102	416	

L	LONG TERM		
ID		Pressure	
136	J-208	377	
137	J-209	356	
138 139	J-21 J-210	332 366	
139	J-210 J-217	383	
147	J-219	384	
148	J-22	332	
150	J-222	366	
151	J-225	370	
152 153	J-226 J-227	369 368	
154	J-228	370	
156	J-23	321	
157	J-230	371	
158	J-231	365	
159	J-232	372	
<u>161</u> 162	J-234 J-235	361 361	
164	J-239	359	
165	J-24	334	
166	J-240	380	
168	J-242	359	
169	J-243	363	
170 171	J-244	338	
171	J-245 J-25	393 321	
172	J-25	353	
174	J-27	316	
175	J-28	344	
178	J-30	315	
179	J-31	328	
180 182	J-34	317 317	
182	J-36 J-37	317	
185	J-39	352	
186	J-4	366	
188	J-41	321	
189	J-42	321	
190	J-43	346	
<u>191</u> 192	J-44 J-45	340	
192	J-45 J-48	328 326	
196	J-49	315	
197	J-5	379	
201	J-53	317	
202	J-54	342	
203	J-55 J-58	347 329	
206 207	J-58 J-59	329	
210	J-62	337	
212	J-65	334	
216	J-69	351	
217	J-7	377	
218	J-70	357	
219	J-72 J-74	357	
221 222	J-74 J-75	355 359	
224	J-73	361	
225	J-79	370	
227	J-80	367	
228	J-81	371	
230	J-83	380	
231	J-84	378	
233 235	J-87 J-89	371 367	
235	J-89 J-9	376	
240	J-93	382	
241	J-94	382	
243	J-96	365	
246	J-99	387	
248	H-1	352	
249 250	H-10	392 363	
250 251	H-100 H-101	363	
252	H-102	403	
253	H-103	378	

	BUILD OUT		
ID	Label	Pressure	
136	J-208	377	
137	J-209	356	
138	J-21	329	
139	J-210	366	
145	J-217	383	
147	J-219	384	
148	J-22	329	
150	J-222	366	
151	J-225	370	
152	J-226	369	
153	J-227	368	
154	J-228	370	
156	J-23	318	
157 158	J-230 J-231	371 365	
158	J-231	305	
161	J-232 J-234	361	
161	J-234 J-235	361	
162	J-235	359	
165	J-239 J-24	331	
166	J-24 J-240	380	
168	J-240 J-242	359	
169	J-242 J-243	363	
170	J-243 J-244	338	
170	J-244 J-245	387	
172	J-245	318	
172	J-25	350	
174	J-27	313	
175	J-28	341	
178	J-30	313	
179	J-31	325	
180	J-34	315	
182	J-36	315	
183	J-37	338	
185	J-39	349	
186	J-4	362	
188	J-41	319	
189	J-42	321	
190	J-43	344	
191	J-44	340	
192	J-45	326	
195	J-48	325	
196	J-49	313	
197	J-5	375	
201	J-53	316	
202	J-54	340	
203	J-55	346	
206	J-58	328	
207	J-59	319	
210	J-62	335	
212	J-65	333	
216	J-69	350	
217	J-7	374	
218	J-70	356	
219	J-72	356	
221	J-74	353	
222	J-75	358	
224	J-78	360	
225	J-79	368	
227	J-80	365	
228	J-81	373	
230	J-83	379	
231	J-84	377	
233 235	J-87 J-89	368 365	
235	J-89	305	
236	J-9 J-93	372	
240	J-93 J-94	380	
241	J-94 J-96	379	
243	J-96 J-99	364	
240	J-99 H-1	365	
240	H-10	387	
249	H-10	363	
250	H-100	360	
201			
252	H-102	403	

·	EVIOTINO	
ID	EXISTING Label	Pressure
254	H-104	379
255	H-105	389
256 257	H-106 H-107	381 397
257	H-107 H-108	378
259	H-109	370
260	H-11	402
261 262	H-110 H-111	369 381
263	H-112	384
264	H-113	389
265	H-114	379
266 267	H-115 H-116	379 379
268	H-117	378
269	H-118	385
270 271	H-119 H-12	384 363
271	H-12	303
273	H-121	377
274	H-122	377
275 276	H-123 H-124	383 395
276	H-124 H-125	395
278	H-126	383
279	H-128	380
280 281	H-129 H-13	399 362
282	H-13	390
283	H-131	354
284	H-132	367
285 286	H-133 H-134	356 358
280	H-134 H-135	364
288	H-136	379
289	H-137	383
290 291	H-138 H-139	375 369
291	H-139	354
293	H-140	370
294	H-141	374
295 296	H-142 H-143	375 390
290	H-144	311
298	H-145	346
299	H-146	351
300	H-147 H-148	385
301 302	H-148 H-149	379 370
303	H-15	352
304	H-150	330
305 306	H-151 H-152	340 369
307	H-153	382
308	H-154	372
309	H-155 H-156	366
310 311	H-156 H-157	358 326
312	H-158	381
313	H-159	377
314	H-16	360
315 316	H-160 H-161	327 346
317	H-162	382
318	H-163	384
319 320	H-164 H-165	357 428
320	H-165 H-166	428 341
322	H-167	385
323	H-168	396
324 325	H-169 H-17	388 365
325	H-17 H-170	305
327	H-171	383
328	H-172	386
329	H-173	349

	IEAR TERM		Г
	Label	// Pressure	-
254	H-104	377	-
255	H-104	387	-
256	H-106	379	-
257	H-107	395	
258	H-108	376	
259	H-109	368	
260	H-11	398	
261	H-110	367	
262	H-111	379	
263	H-112	382	
264	H-113	387	_
265	H-114	376	-
266	H-115 H-116	377	-
267 268	H-116 H-117	377 376	-
269	H-118	383	-
270	H-119	382	-
271	H-12	358	-
272	H-120	376	
273	H-121	376	
274	H-122	375	
275	H-123	382	
276	H-124	393	
277	H-125	384	
278	H-126	381	
279	H-128	378	
280	H-129	397 358	-
281 282	H-13 H-130	358	-
283	H-130 H-131	353	-
283	H-131 H-132	366	-
285	H-133	355	-
286	H-134	357	-
287	H-135	363	
288	H-136	377	
289	H-137	381	
290	H-138	374	
291	H-139	368	
292	H-14	350	_
293	H-140	369	-
294	H-141	372 374	-
295 296	H-142 H-143	389	-
297	H-144	309	-
298	H-145	346	-
299	H-146	350	
300	H-147	381	
301	H-148	374	
302	H-149	366	
303	H-15	347	L
304	H-150	327	
305	H-151	337	H
306 307	H-152 H-153	364 373	⊢
307	H-153 H-154	373	\vdash
308	H-154	365	\vdash
310	H-156	357	⊢
311	H-157	325	F
312	H-158	377	
313	H-159	373	
314	H-16	355	
315	H-160	324	
316	H-161	342	_
317	H-162	378	⊢
318 319	H-163 H-164	380 353	⊢
319	H-164 H-165	425	⊢
320	H-165	337	⊢
322	H-167	383	⊢
323	H-168	394	F
324	H-169	387	
325	H-17	361	
326	H-170	372	
327	H-171	381	
328	H-172	378	L
329	H-173	340	L

MID TERM		
ID	Label	Pressure
254	H-104	373
255	H-105	383
256	H-106	375
257	H-107	391
258	H-108	372
259	H-109	364
260	H-11	387
261	H-110	363
-	H-110	375
262	H-111 H-112	
263		378
264	H-113	383
265	H-114	373
266	H-115	374
267	H-116	374
268	H-117	373
269	H-118	380
270	H-119	379
271	H-12	359
272	H-120	372
273	H-121	372
274	H-122	372
275	H-123	378
276	H-124	390
277	H-124 H-125	390
278	H-125 H-126	
		378
279	H-128	374
280	H-129	394
281	H-13	359
282	H-130	385
283	H-131	351
284	H-132	364
285	H-133	352
286	H-134	355
287	H-135	361
288	H-136	374
289	H-137	378
290	H-138	370
291	H-139	365
	H-14	351
292		
293	H-140	366
294	H-141	369
295	H-142	371
296	H-143	385
297	H-144	309
298	H-145	347
299	H-146	351
300	H-147	383
301	H-148	377
302	H-149	368
303	H-15	349
304	H-150	330
305	H-151	340
306	H-152	366
307	H-152 H-153	373
307	H-153 H-154	373
	-	
309	H-155	366
310	H-156	358
311	H-157	326
312	H-158	374
313	H-159	373
314	H-16	357
315	H-160	327
316	H-161	342
317	H-162	376
318	H-163	377
319	H-164	353
320	H-165	383
320	H-165	339
322	H-167	379
323	H-168	390
	H-169	383
324		
325	H-17	362
325 326	H-170	368
325	H-170 H-171	
325 326	H-170	368

LONG TERM		
ID	Label	Pressure
254 255	H-104 H-105	359
255	H-105 H-106	370 362
257	H-107	377
258	H-108	359
259	H-109	351
260	H-11	381
261	H-110	350
262 263	H-111 H-112	362 365
264	H-112	370
265	H-114	359
266	H-115	361
267	H-116	361
268	H-117	360
269 270	H-118 H-119	367 366
270	H-119	353
272	H-120	359
273	H-121	359
274	H-122	360
275	H-123	366
276	H-124	377
277	H-125	369 366
278 279	H-126 H-128	366
279	H-120 H-129	362
281	H-13	353
282	H-130	373
283	H-131	345
284	H-132	357
285	H-133	345
286	H-134	347
287 288	H-135 H-136	353 362
289	H-130 H-137	366
290	H-138	359
291	H-139	353
292	H-14	345
293	H-140	354
294	H-141	357
295 296	H-142 H-143	358 373
296	H-143 H-144	373
298	H-145	346
299	H-146	350
300	H-147	377
301	H-148	371
302	H-149	362
303	H-15	343
304	H-150	325
305 306	H-151 H-152	335 360
307	H-153	366
308	H-154	371
309	H-155	365
310	H-156	357
311	H-157	326
312	H-158	369
313 314	H-159 H-16	368 351
314	H-16 H-160	351
316	H-161	337
317	H-162	371
318	H-163	372
319	H-164	347
320	H-165	376
321	H-166	333
322 323	H-167 H-168	367 377
323	H-160	370
325	H-17	357
326	H-170	357
327	H-171	365
328	H-172	368
329	H-173	330

	BUILD OUT	
ID	Label	Pressure
254	H-104	359
255	H-105	370
256	H-106	362
257	H-107	377
258	H-108	359
259	H-109	351
260	H-11	378
261	H-110	350
262	H-111	362
263	H-112	365
264	H-112	370
-	H-113	
265		359
266	H-115	361
267	H-116	361
268	H-117	360
269	H-118	367
270	H-119	366
271	H-12	350
272	H-120	359
273	H-121	359
274	H-122	360
275	H-123	366
276	H-123	377
270	H-124 H-125	369
277		
-	H-126	366
279	H-128	362
280	H-129	381
281	H-13	350
282	H-130	373
283	H-131	345
284	H-132	357
285	H-133	345
286	H-134	347
287	H-135	353
288	H-136	362
289	H-137	366
290	H-138	359
291	H-139	353
292	H-14	342
293	H-140	354
294	H-141	357
295	H-142	358
296	H-143	373
297	H-144	309
-	H-144	
298		345
299	H-146	350
300	H-147	373
301	H-148	367
302	H-149	359
303	H-15	340
304	H-150	322
305	H-151	332
306	H-152	356
307	H-153	362
308	H-154	370
309	H-155	364
310	H-156	357
311	H-157	325
312	H-158	366
312	H-158 H-159	366
313		300
-	H-16	
315	H-160	320
316	H-161	335
317	H-162	368
318	H-163	377
319	H-164	344
320	H-165	372
321	H-166	331
322	H-167	367
323	H-168	377
324	H-169	370
325	H-17	354
326	H-170	357
	H-170	365
307		
327 328	H-171	363

r		
ID	EXISTING Label	Pressure
330	H-174	299
331	H-175	358
333	H-177	388
334 335	H-178	371
335	H-18 H-180	362 362
337	H-181	352
338	H-182	465
339	H-183	451
340	H-184	340
341 342	H-185 H-186	530 369
343	H-187	413
344	H-188	335
345	H-189	390
346 347	H-19 H-190	366 377
347	H-190 H-191	412
349	H-192	404
350	H-193	341
351	H-194	276
352	H-195 H-196	319
353 354	H-196 H-197	365 405
355	H-198	407
356	H-199	353
357	H-2	369
358	H-20	352 326
359 360	H-200 H-201	400
361	H-202	370
362	H-203	374
363	H-204	379
364 365	H-205 H-207	382 419
365	H-207 H-208	419
367	H-209	529
368	H-21	348
369	H-210	534
370 371	H-211 H-212	547 372
371	H-212 H-213	372
373	H-214	402
374	H-215	404
375	H-216	393
376 377	H-217 H-218	377 457
378	H-219	456
379	H-22	349
380	H-220	461
381	H-221	372
382 383	H-222 H-223	380 377
384	H-223	341
385	H-24	385
386	H-25	377
387	H-26	381
388 389	H-27 H-28	372 382
389	H-20 H-29	371
391	H-3	381
392	H-30	361
393	H-31	338
394 395	H-32 H-33	329 352
395	H-34	335
397	H-35	326
398	H-36	326
399	H-37	321
400 401	H-38 H-39	317 313
401	H-4	342
403	H-40	375
404	H-41	323
405	H-42	326
406	H-43	323

NEAR TERM		
ID	Label	Pressure
330 331	H-174	290 350
333	H-175 H-177	350
334	H-178	370
335	H-178	358
336	H-180	358
337	H-181	348
338	H-182	462
339	H-183	402
340	H-184	338
341	H-185	528
342	H-186	368
343	H-187	412
344	H-188	335
345	H-189	390
346	H-19	362
347	H-190	377
348	H-191	412
349	H-192	403
350	H-193	340
351	H-194	276
352	H-195	319
353	H-196	365
354	H-197	405
355	H-198	406
356	H-199	352
357	H-2	368
358	H-20	348
359	H-200	325
360	H-201	399
361	H-202	370
362	H-203	372
363	H-204	377
364	H-205	379
365	H-207	418
366	H-208	421
367	H-209	527
368	H-21	344
369	H-210	532
370	H-211	546
371	H-212	364
372	H-213 H-214	368
373	H-214 H-215	400
374 375	H-215	402 391
376	H-210	376
377	H-218	454
378	H-219	452
379	H-219	345
380	H-220	458
381	H-220	371
382	H-221	379
383	H-223	375
384	H-23	338
385	H-24	382
386	H-25	375
387	H-26	380
388	H-27	371
389	H-28	382
390	H-29	370
391	H-3	379
392	H-30	361
393	H-31	337
394	H-32	328
395	H-33	348
396	H-34	331
397	H-35	322
398	H-36	323
399	H-37	318
400	H-38	315
401	H-39	312
402	H-4	341
403	H-40	372
404	H-41	320
405	H-42	323
406	H-43	320

MID TERM		
ID	Label	Pressure
330	H-174	289
331	H-175	349
333	H-177	379
334	H-178	371
335	H-18	360
336	H-180	359
337	H-181	349
338 339	H-182 H-183	393 379
339	H-163 H-184	379
340	H-185	405
342	H-186	369
343	H-187	413
344	H-188	336
345	H-189	391
346	H-19	364
347	H-190	378
348	H-191	413
349	H-192	405
350	H-193	341
351	H-194	277
352	H-195	320
353	H-196	366
354	H-197	406
355	H-198	407
356	H-199	353
357	H-2	364
358 359	H-20	350
359	H-200 H-201	327 400
361	H-201 H-202	371
362	H-202	368
363	H-204	373
364	H-205	375
365	H-207	419
366	H-208	422
367	H-209	405
368	H-21	346
369	H-210	413
370	H-211	432
371	H-212	364
372	H-213	368
373	H-214	397
374	H-215	398
375	H-216	387
376	H-217	372
377	H-218	385
378	H-219	384
379	H-22	347
380	H-220	390
381 382	H-221 H-222	372 381
382	H-222 H-223	381
384	H-223	342
385	H-24	386
386	H-25	379
387	H-26	383
388	H-27	375
389	H-28	386
390	H-29	373
391	H-3	375
392	H-30	362
393	H-31	338
394	H-32	330
395	H-33	350
396	H-34	334
397	H-35	325
398	H-36	326
399	H-37	321
400	H-38	318
401	H-39	312
402	H-4	339
403 404	H-40 H-41	376 324
404	H-41 H-42	324
	H-42	320
406		

LONG TERM		
ID	Label	Pressure
330	H-174	281
331	H-175	340
333 334	H-177	370
335	H-178 H-18	370 354
336	H-180	353
337	H-181	344
338	H-182	386
339	H-183	372
340 341	H-184 H-185	339 397
341	H-185	368
343	H-187	412
344	H-188	335
345	H-189	390
346	H-19	358
347 348	H-190	377 412
340	H-191 H-192	412
350	H-192	340
351	H-194	276
352	H-195	319
353	H-196	365
354	H-197	405
355	H-198	406 352
356 357	H-199 H-2	352
358	H-20	344
359	H-200	326
360	H-201	399
361	H-202	370
362	H-203	355
363	H-204	360
364 365	H-205 H-207	362 418
366	H-207 H-208	418
367	H-209	397
368	H-21	340
369	H-210	405
370	H-211	424
371	H-212	356
372 373	H-213 H-214	361 384
374	H-215	385
375	H-216	373
376	H-217	359
377	H-218	378
378	H-219	377
379 380	H-22 H-220	342 383
381	H-221	371
382	H-222	379
383	H-223	376
384	H-23	338
385	H-24	382
386 387	H-25 H-26	375 380
388	H-20 H-27	371
389	H-28	382
390	H-29	370
391	H-3	363
392	H-30	361
393 394	H-31 H-32	337
394 395	H-32 H-33	329 344
396	H-34	328
397	H-35	320
398	H-36	321
399	H-37	316
400	H-38	315
401	H-39	312
402 403	H-4 H-40	332 372
403	H-40 H-41	320
405	H-42	320
406	H-43	318

	BUILD OU	
ID	Label	Pressure
330	H-174	276
331	H-175	336
333	H-177	366
334	H-178	370
335	H-18	351
336	H-180	350
337	H-181	342
338	H-182	379
339	H-183	363
340	H-184	337
341 342	H-185	391 368
	H-186	
343	H-187	412
344	H-188	334
345	H-189	390
346	H-19	355
347	H-190	376
348	H-191	411
349	H-192	403
350	H-193	340
351	H-194	275
352	H-195	318
353	H-196	364
354	H-197	404
355	H-197	404
355	H-190	352
357	H-2	353
358	H-20	341
359	H-200	325
360	H-201	399
361	H-202	369
362	H-203	355
363	H-204	360
364	H-205	362
365	H-207	418
366	H-208	420
367	H-209	391
368	H-21	338
369	H-210	399
370	H-211	418
371	H-212	352
372	H-212	356
372	H-213	384
373		
	H-215	385
375	H-216	373
376	H-217	359
377	H-218	368
378	H-219	366
379	H-22	340
380	H-220	372
381	H-221	370
382	H-222	379
383	H-223	376
384	H-23	336
385	H-24	380
386	H-25	373
387	H-26	377
388	H-27	369
389	H-27 H-28	379
389	H-20	369
391	H-3	363
392	H-30	360
393	H-31	337
394	H-32	328
395	H-33	341
396	H-34	325
397	H-35	317
398	H-36	318
399	H-37	314
400	H-38	313
400	H-39	312
402	H-4	332
402	H-40	370
403		
	L / 1	
404	H-41	318
	H-41 H-42 H-43	318 319 316

r	EXISTING	
ID	Label	Pressure
407	H-44	387
408	H-45	357
409	H-46	355
410 411	H-47 H-48	394 437
411	H-40 H-49	366
413	H-5	524
414	H-50	375
415	H-51	383
416	H-52	382
417 418	H-53 H-54	376 384
410	H-55	385
420	H-56	380
421	H-57	372
422	H-58	368
423	H-59	365
424 425	H-60 H-61	362 360
425	H-61	364
427	H-63	370
428	H-64	379
429	H-65	377
430	H-66	378
431	H-67 H-68	377
432 433	H-68 H-69	384 378
434	H-7	541
435	H-70	382
436	H-71	388
437	H-72	437
438	H-73	376
439 440	H-74 H-75	380 359
440	H-76	401
442	H-77	300
443	H-78	304
444	H-79	372
445	H-8	544
446 447	H-80 H-81	372 367
447	H-82	381
449	H-83	379
450	H-84	359
451	H-85	377
452	H-86	377
453	H-87	380
454 455	H-88 H-89	374 330
456	H-9	477
457	H-90	331
458	H-91	341
459	H-92	378
460 461	H-93 H-94	385 397
462	H-95	383
463	H-96	386
464	H-97	382
465	H-98	382
466	H-99	385
977 982	J-246 J-247	358 385
983	J-248	385
1019	J-254	548
1030	J-257	388
1036	J-258	358
1050	J-260	371
1066 1069	J-262 J-263	399 281
1009	J-263	548
1185	J-288	377
1209	J-290	454
1213	J-291	484
1219	J-292	366

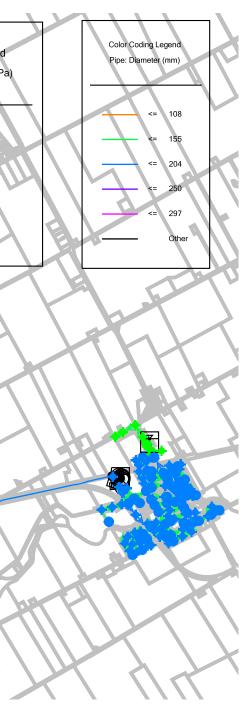
NEAR TERM				
ID	Label	Pressure		
407	H-44	383		
408 409	H-45 H-46	353 351	_	
410	H-47	390	-	
411	H-48	434		
412	H-49	362		
413	H-5	523		
414	H-50	371		
415 416	H-51 H-52	379 378		
417	H-53	372	_	
418	H-54	380		
419	H-55	381		
420	H-56	375		
421	H-57	366		
422 423	H-58 H-59	364 360		
424	H-60	358		
425	H-61	356		
426	H-62	360		
427	H-63	366		
428	H-64	372		
429 430	H-65	370	$ \vdash$	
430	H-66 H-67	371 368		
431	H-67	376		
433	H-69	369		
434	H-7	539		
435	H-70	373		
436	H-71	380		
437	H-72	433		
438 439	H-73 H-74	370 374	-	
440	H-75	355	-	
441	H-76	400		
442	H-77	299		
443	H-78	303		
444	H-79	371		
445 446	H-8 H-80	543 371		
440	H-80	365		
448	H-82	379		
449	H-83	377		
450	H-84	357		
451	H-85	376		
452 453	H-86 H-87	375 379		
453	H-88	379		
455	H-89	329		
456	H-9	474		
457	H-90	330		
458	H-91	341		
459	H-92 H-93	376	$ \vdash$	
460 461	H-93 H-94	383 395		
462	H-95	395	$ \vdash$	
463	H-96	385		
464	H-97	381		
465	H-98	380		
466	H-99	383		
977 982	J-246 J-247	357 383		
982	J-247 J-248	383		
1019	J-254	547		
1030	J-257	380		
1036	J-258	350		
1050	J-260	370		
1066	J-262	397		
1069 1075	J-263 J-264	272 546	$ \vdash$	
1075	J-264 J-270	349		
1155	J-271	339		
1156	J-272	339		
4457				
1157	J-273	377		
1157 1158 1160	J-273 J-274 J-276	377 386 404		

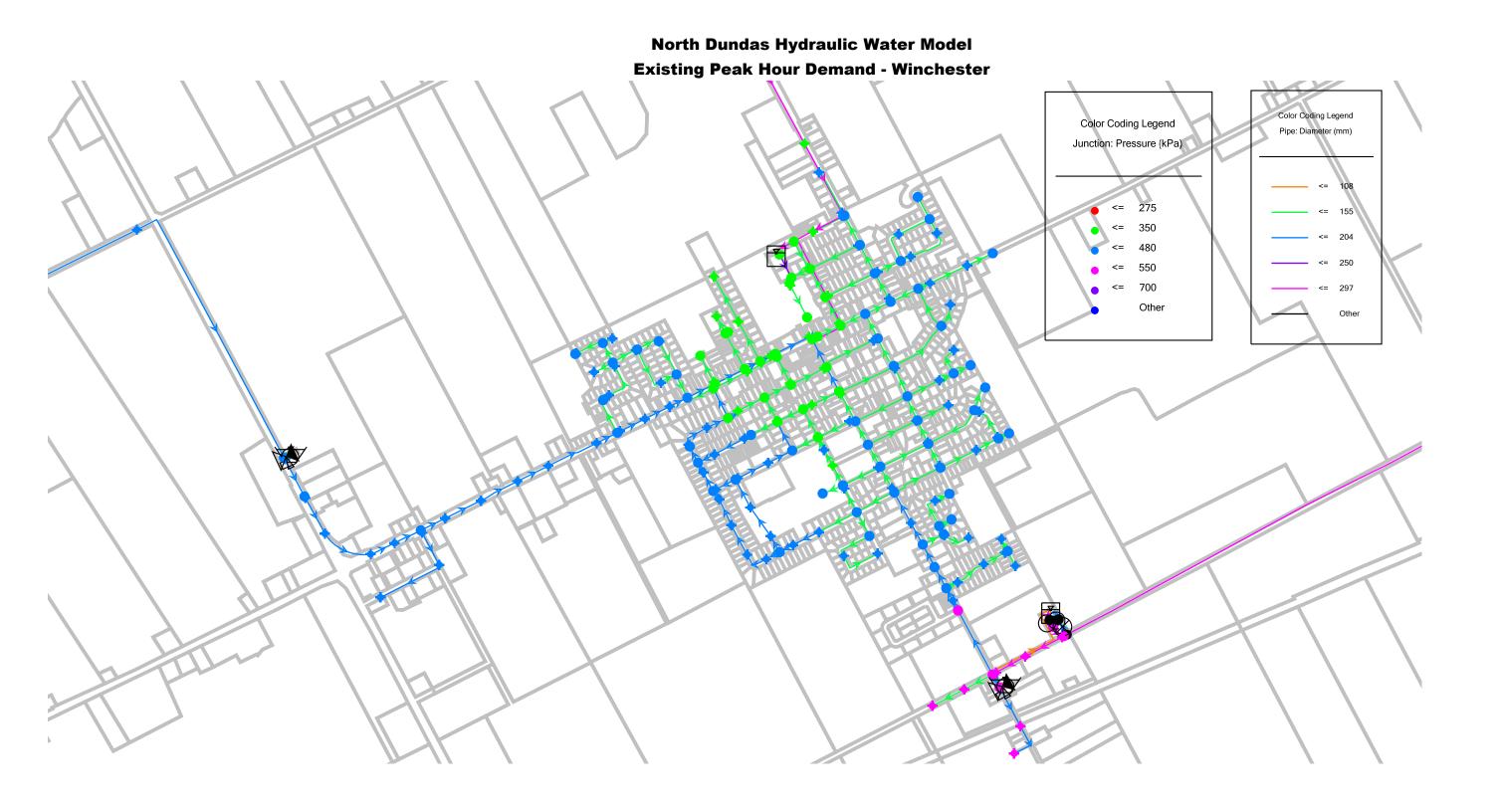
MID TERM			
ID	Label	Pressure	
407	H-44	385	
408	H-45	354	
409	H-46	352	
410	H-47	387	
411	H-48	392	
412	H-49	356	
413	H-5	400	
414	H-50	365	
415	H-51	374	
416	H-52	378	
417	H-53	374	
418	H-54	382	
419	H-55	383	
420	H-56	377	
421	H-57	369	
422	H-58	366	
423	H-59	363	
424	H-60	359	
425	H-61		
		359	
426	H-62	358	
427	H-63	360	
428	H-64	374	
429	H-65	372	
430	H-66	372	
431	H-67	369	
432	H-68	375	
433	H-69	369	
434	H-7	416	
435	H-70	372	
436	H-71	379	
437	H-72	391	
438	H-73	374	
439	H-74	374	
440	H-75	356	
441	H-76	396	
442	H-77	298	
443	H-78	302	
444	H-79	367	
445	H-8	420	
446	H-80	367	
447	H-81	362	
448	H-82	375	
449	H-83	373	
450	H-84	353	
451	H-85	372	
452	H-86	372	
453	H-87	375	
454	H-88	369	
455	H-89	328	
455	H-89	328	
	H-90		
457		329	
458	H-91	339	
459	H-92	373	
460	H-93	380	
461	H-94	392	
462	H-95	378	
463	H-96	381	
464	H-97	377	
465	H-98	377	
466	H-99	380	
977	J-246	358	
982	J-247	379	
983	J-248	379	
1019	J-254	434	
1030	J-254	379	
1030	J-257 J-258	349	
1050	J-260	371	
1066	J-262	394	
1069	J-263	273	
1075	J-264	432	
1151	J-267	354	
1154	J-270	350	
1155	J-271	340	
1100			
1156	J-272	340	
	J-272 J-273	340	

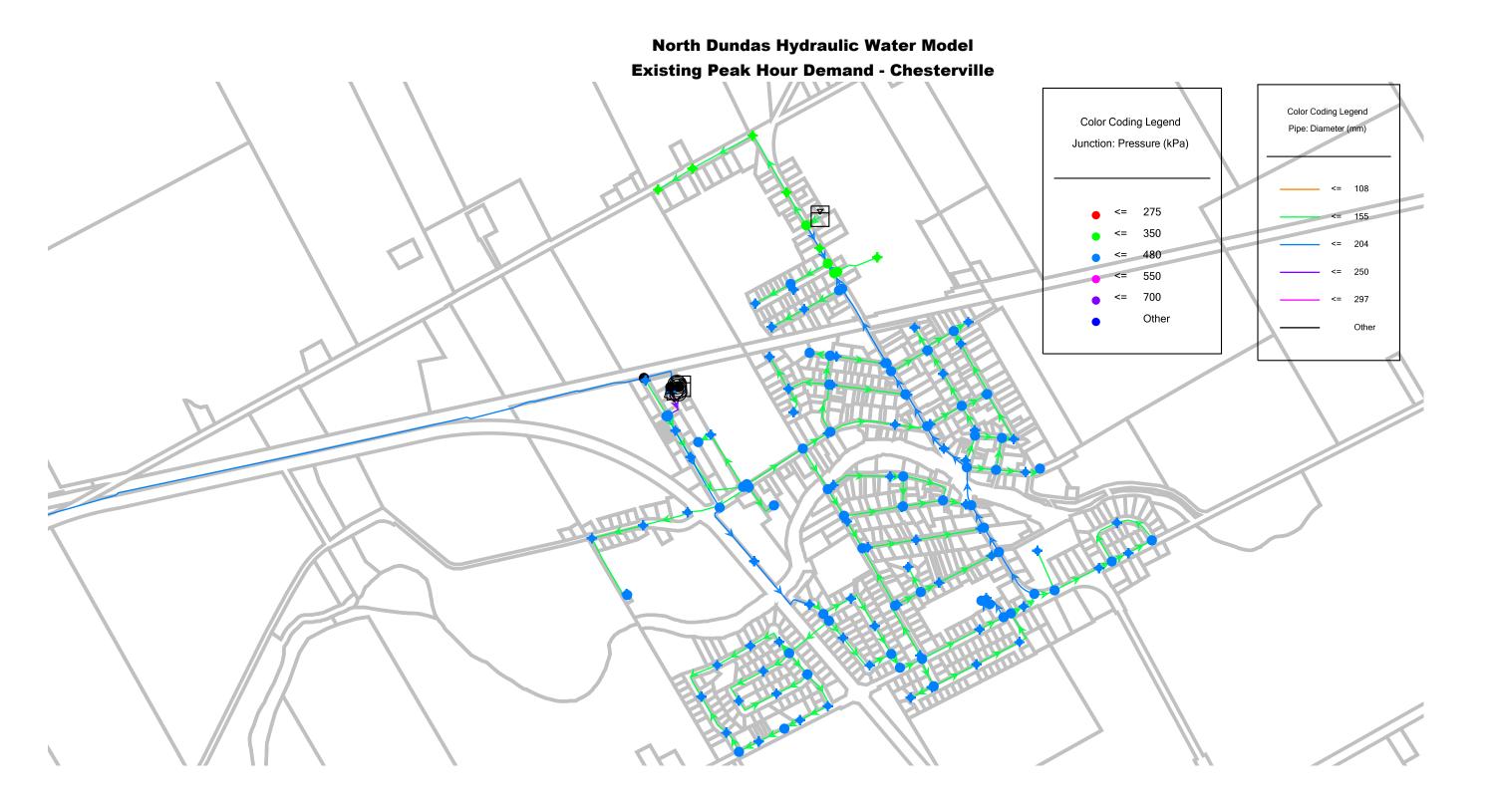
LONG TERM			
ID	Label	Pressure	
407 408	H-44 H-45	379 348	
408	H-45 H-46	348	
410	H-47	382	
411	H-48	385	
412	H-49	350	
413	H-5	392	
414 415	H-50 H-51	359 368	
415	H-51 H-52	300	
417	H-53	368	
418	H-54	376	
419	H-55	377	
420	H-56	371	
421 422	H-57	362	
422	H-58 H-59	360 357	
424	H-60	354	
425	H-61	355	
426	H-62	353	
427	H-63	355	
428	H-64	366	
429 430	H-65	365 364	
430 431	H-66 H-67	364 362	
431	H-67	368	
433	H-69	361	
434	H-7	408	
435	H-70	364	
436	H-71	370	
437	H-72	385	
438 439	H-73 H-74	370 374	
439	H-74 H-75	374	
441	H-76	384	
442	H-77	294	
443	H-78	298	
444	H-79	354	
445	H-8	412	
446 447	H-80 H-81	354 349	
447	H-81	362	
449	H-83	360	
450	H-84	340	
451	H-85	359	
452	H-86	360	
453	H-87	363	
454	H-88	357	
455 456	H-89 H-9	322 391	
450	H-9 H-90	325	
458	H-91	335	
459	H-92	360	
460	H-93	367	
461	H-94	380	
462 463	H-95 H-96	365 369	
463	H-96 H-97	369	
465	H-98	364	
466	H-99	367	
977	J-246	357	
982	J-247	366	
983	J-248	366	
1019 1030	J-254 J-257	426 370	
1030	J-257	340	
1050	J-260	370	
1066	J-262	381	
1069	J-263	272	
1075	J-264	424	
1151	J-267	346	
1152 1153	J-268 J-269	391 391	
1153	J-269 J-270	391	
1155	J-271	333	
1156	J-272	333	
	-	·I	

	BUILD OU	
ID 407	Label	Pressure
407 408	H-44 H-45	375 345
408	H-45	343
409	H-47	392
410	H-48	381
411	H-49	347
413	H-5	386
414	H-50	356
414	H-51	365
416	H-52	370
417	H-53	364
418	H-54	372
419	H-55	373
420	H-56	367
421	H-57	358
422	H-58	356
423	H-59	353
424	H-60	351
425	H-61	352
426	H-62	352
427	H-63	352
428	H-64	362
429	H-65	361
430	H-66	360
431	H-67	357
432	H-68	363
433	H-69	357
434	H-7	402
435	H-70	360
436	H-71	366
437	H-72	380
438	H-73	367
439	H-74	371
440	H-75	348
441	H-76	384
442	H-77	294
443	H-78	298
444	H-79	354
445	H-8	406
446	H-80	354
447	H-81	349
448	H-82	362
449	H-83	360
450	H-84	340
451	H-85	359
452	H-86	360
453	H-87	363
454	H-88	357
455	H-89	322
456 457	H-9	385
457	H-90 H-91	325 335
458	H-91 H-92	335
459	H-92 H-93	360
460	H-93 H-94	367
461	H-94 H-95	365
462	H-95	369
464	H-97	364
465	H-97	364
466	H-99	367
977	J-246	357
982	J-240	366
983	J-248	366
1019	J-254	420
1030	J-257	366
1036	J-258	336
1050	J-260	370
1066	J-262	381
1069	J-263	272
1075	J-264	418
1151	J-267	342
1152	J-268	386
1153	J-269	386
1154	J-270	338
4455	J-271	328
1155	0211	020

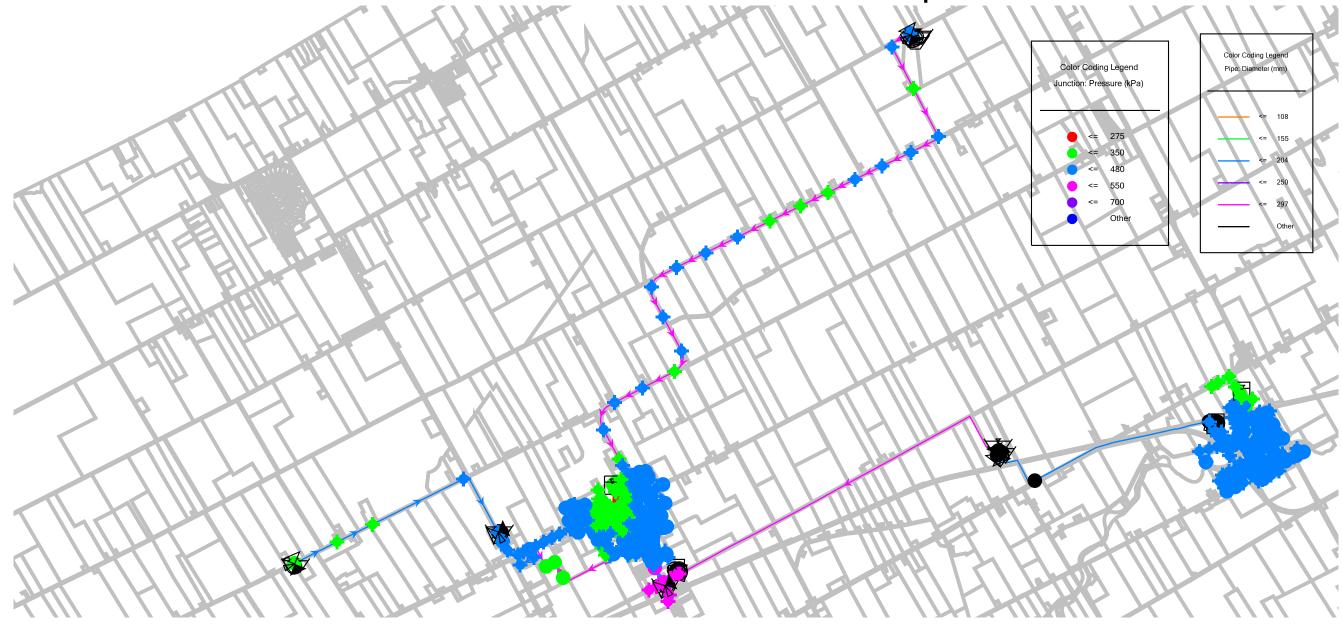
EXISTING		
ID Label Pressur		Pressure

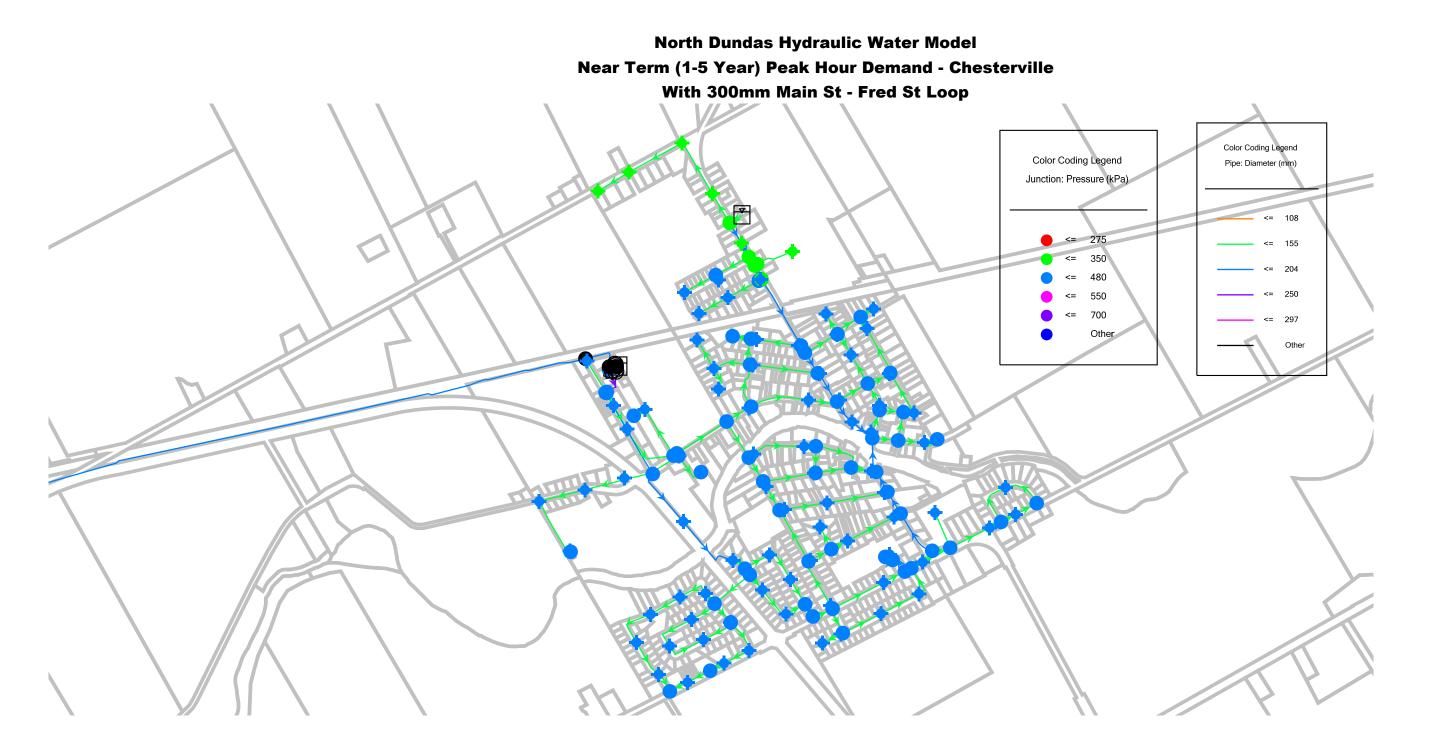

Ν	NEAR TERM		
ID	Label	Pressure	
1161	J-277	404	
1163	J-279	397	
1164	J-280	397	
1185	J-288	372	
1209	J-290	450	
1213	J-291	482	
1219	J-292	362	

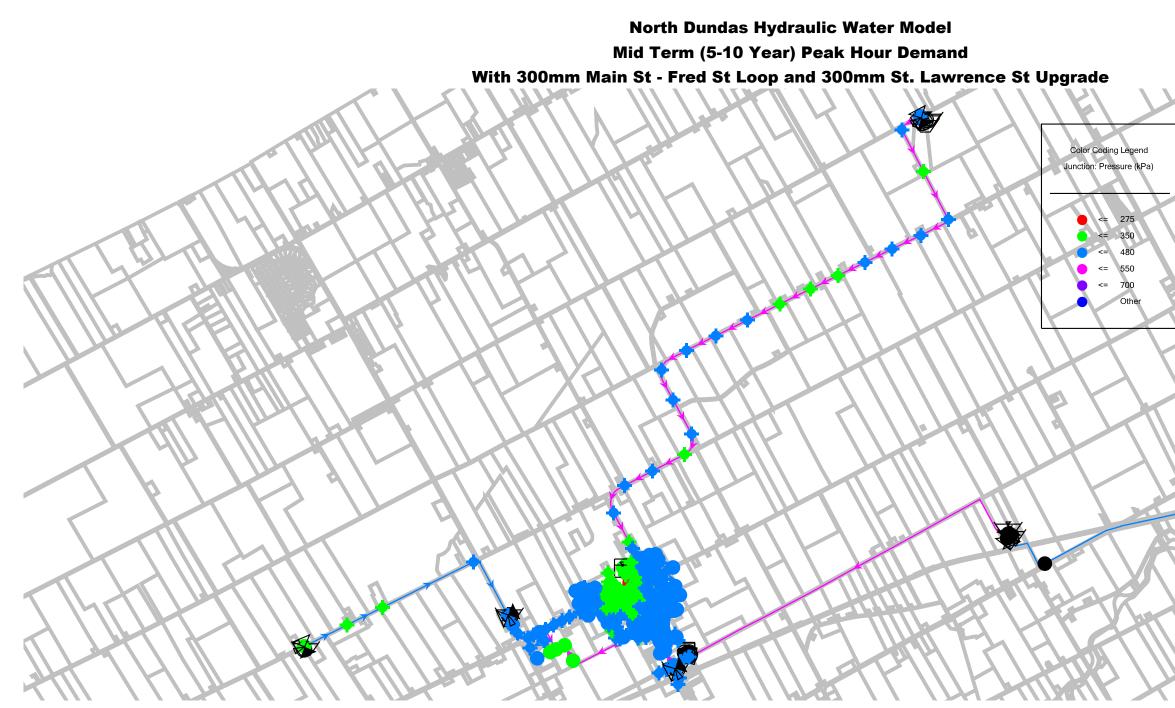

MID TERM		
ID	Label	Pressure
1160	J-276	405
1161	J-277	405
1163	J-279	401
1164	J-280	401
1165	J-281	401
1169	J-285	430
1171	J-287	350
1185	J-288	374
1209	J-290	395
1213	J-291	399
1219	J-292	363

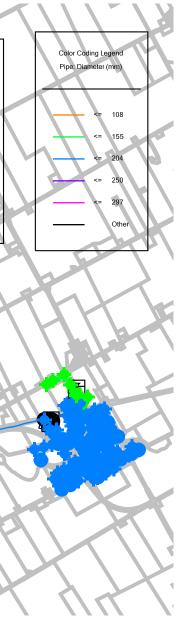

LONG TERM		
ID	Label	Pressure
1157	J-273	372
1158	J-274	382
1160	J-276	404
1161	J-277	404
1163	J-279	397
1164	J-280	397
1165	J-281	397
1166	J-282	393
1169	J-285	423
1170	J-286	433
1171	J-287	342
1185	J-288	368
1209	J-290	388
1213	J-291	392
1219	J-292	358

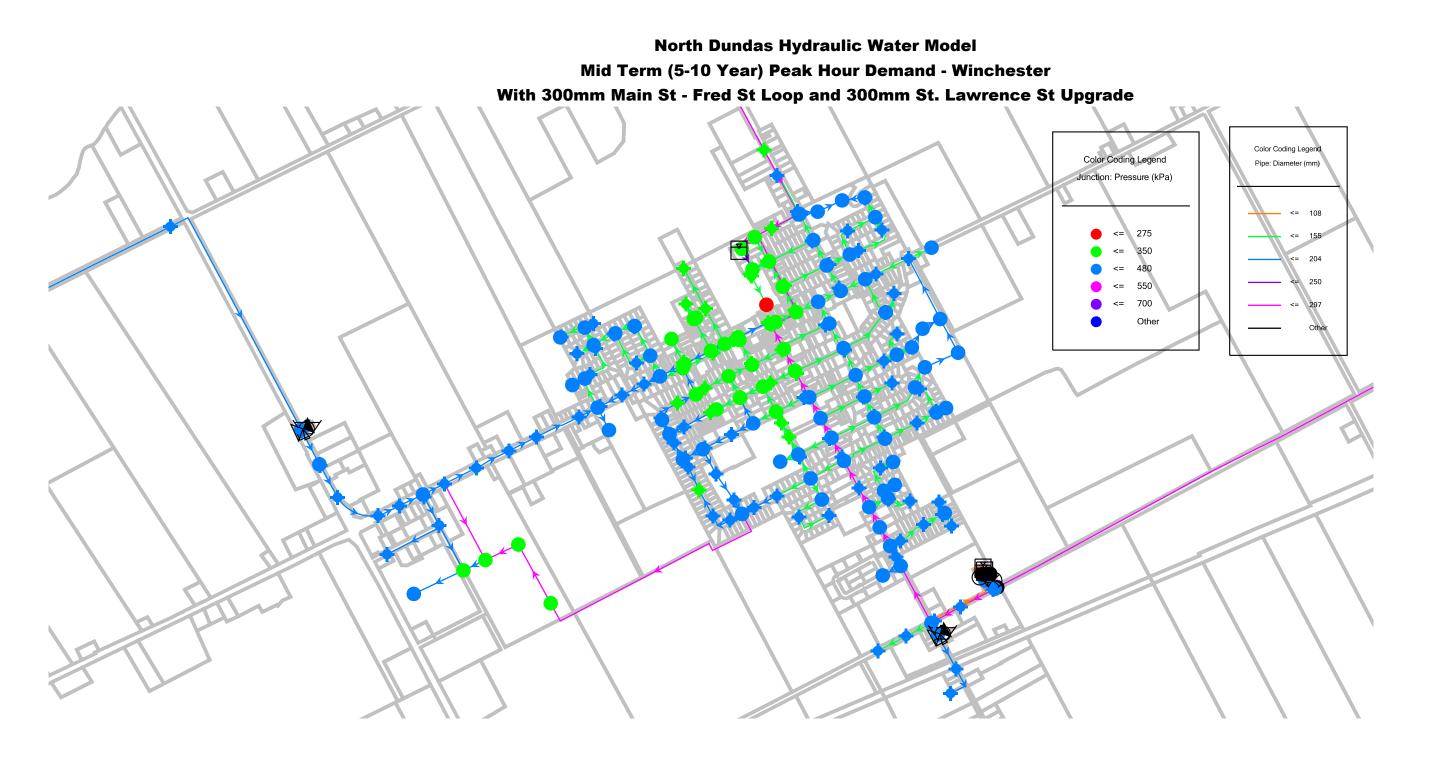
		_
BUILD OUT		
ID	Label	Pressure
1157	J-273	369
1158	J-274	378
1159	J-275	398
1160	J-276	403
1161	J-277	403
1162	J-278	384
1163	J-279	394
1164	J-280	394
1165	J-281	394
1166	J-282	389
1167	J-283	378
1168	J-284	419
1169	J-285	416
1170	J-286	426
1171	J-287	338
1185	J-288	364
1205	J-289	388
1209	J-290	382
1213	J-291	385
1219	J-292	355

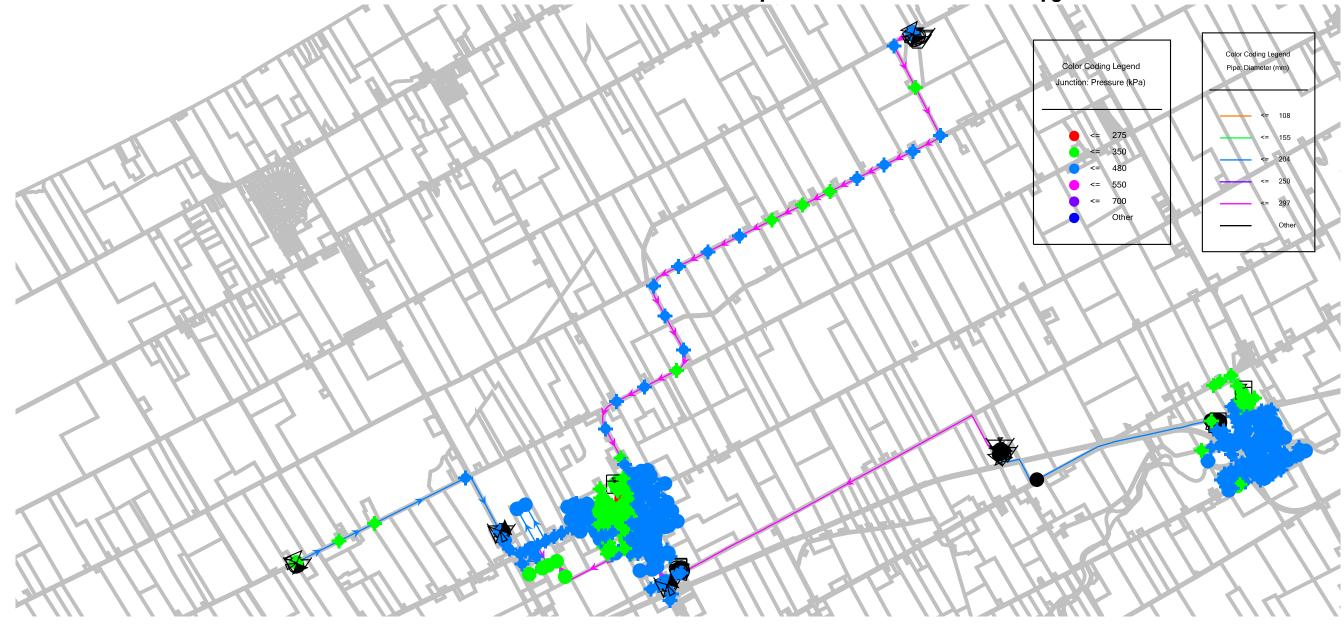

North Dundas Hydraulic Water Model **Existing Peak Hour Demand Color Coding Legend** Junction: Pressure (kPa) 275 350 <= . <= 480 550 <= 700 Other • Z **V**

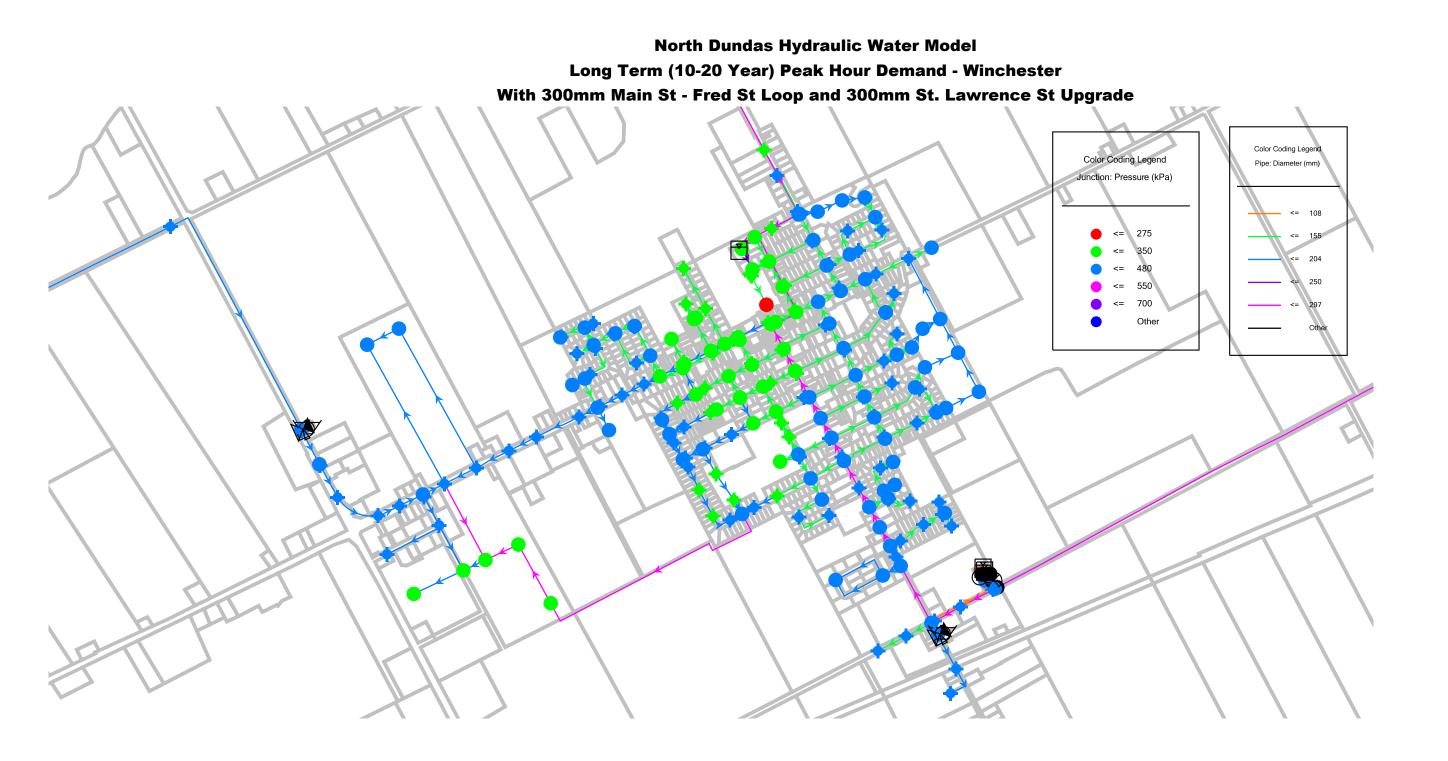


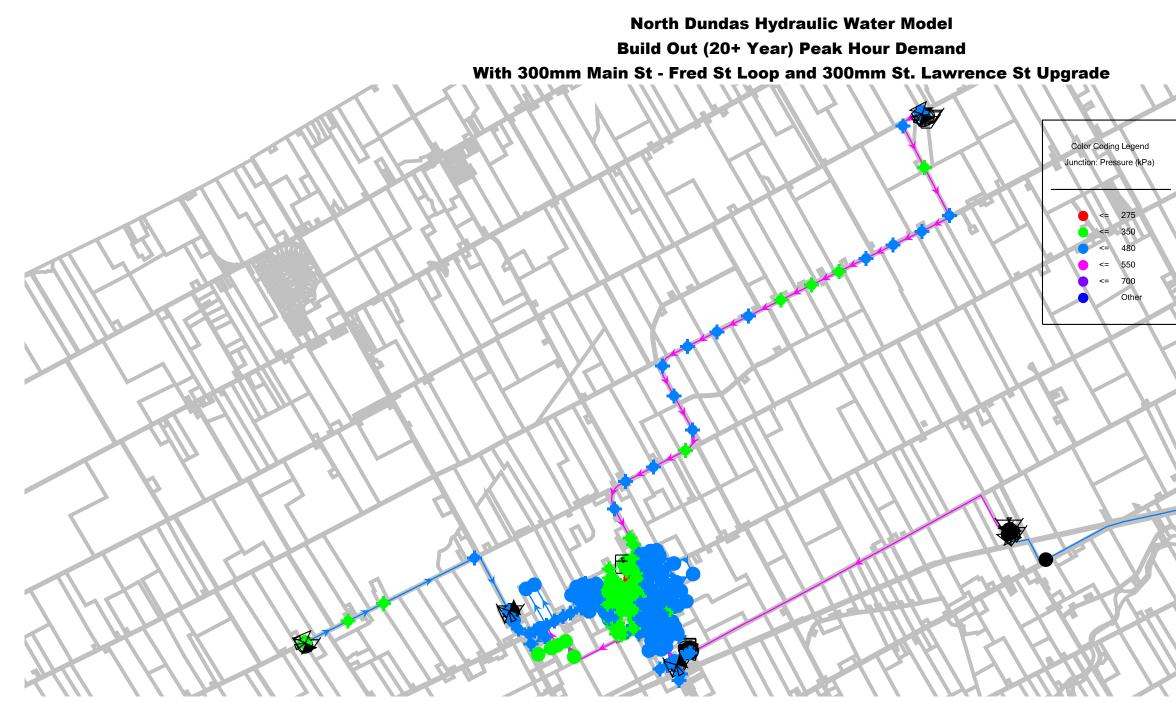


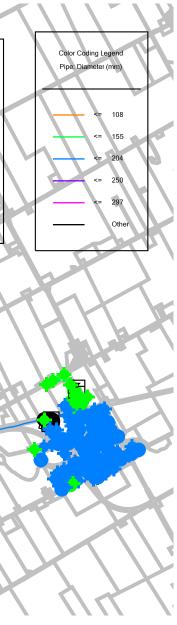

North Dundas Hydraulic Water Model Near Term (1-5 Year) Peak Hour Demand With 300mm Main St - Fred St Loop

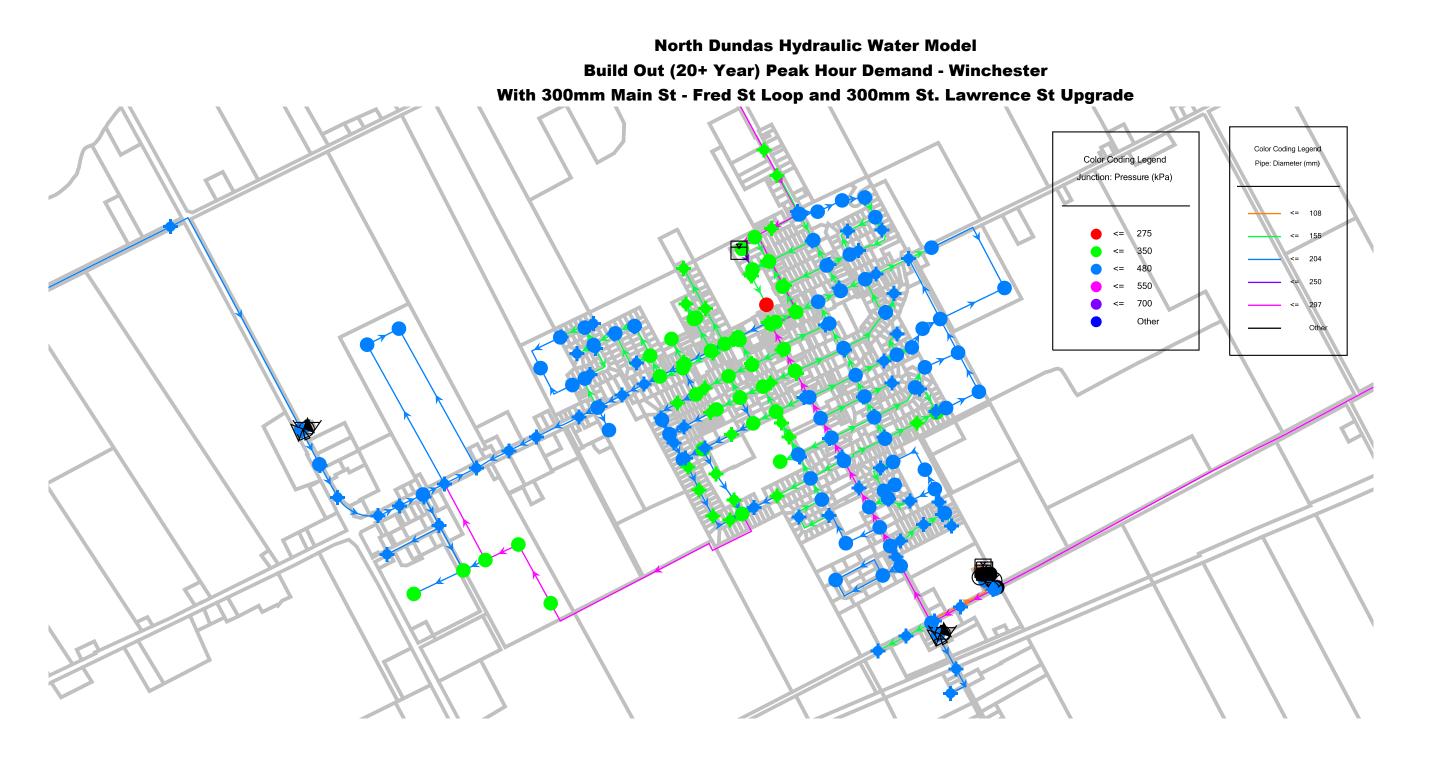









North Dundas Hydraulic Water Model Long Term (10-20 Year) Peak Hour Demand With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade



ID Label 248 H-1 249 H-10 250 H-100 251 H-101 252 H-102 253 H-102	Fire Flow 62.85 143.46
249 H-10 250 H-100 251 H-101 252 H-102	143.46
250 H-100 251 H-101 252 H-102	
251 H-101 252 H-102	81.5
252 H-102	84.62
	89.26
	80.94
254 H-104	
255 H-105	56.78
256 H-106	54.9
257 H-107	54.33
258 H-108 259 H-109	53.3 50.94
260 H-11	141.68
261 H-110	
262 H-111	73.73
263 H-112	74.14
264 H-113	87.84
265 H-114	74.22
266 H-115 267 H-116	75.18 73.76
268 H-117	80.49
269 H-118	70.51
270 H-119	
271 H-12	131.92
272 H-120	70.66
273 H-121	57.46
274 H-122 275 H-123	82.3 87.45
276 H-124	96.54
277 H-125	91.51
278 H-126	98.84
279 H-128	40.35
280 H-129	
281 H-13	134.36
282 H-130 283 H-131	54.64 55.15
284 H-132	44.35
285 H-133	114.03
286 H-134	59.95
287 H-135	45.51
288 H-136	55.62
289 H-137 290 H-138	47.4 87.75
290 H-138 291 H-139	81.7
292 H-14	129.47
293 H-140	86.76
294 H-141	63.27
295 H-142	75.3
296 H-143 297 H-144	86.07
297 H-144 298 H-145	
299 H-146	
300 H-147	58.88
301 H-148	
302 H-149	
303 H-15	131.35
304 H-150 305 H-151	41.07 33.16
305 H-151 306 H-152	88.53
307 H-152	
308 H-154	
309 H-155	
310 H-156	314.76
311 H-157	212.18
312 H-158 313 H-159	124.93 57.31
314 H-16	143.14
315 H-160	
316 H-161	102.26
317 H-162	140.57
318 H-163	43.23
319 H-164 320 H-165	
320 H-165 321 H-166	
	27.13

Ν	NEAR TER	м
ID	Label	Fire Flow
248	H-1	62.06
249 250	H-10 H-100	144.04 80.08
251	H-100	83.16
252	H-102	87.8
253	H-103	79.61
254	H-104	54.84
255 256	H-105 H-106	56.22
250	H-106 H-107	54.42 53.87
258	H-107	52.85
259	H-109	50.53
260	H-11	142.83
261	H-110	48.7
262	H-111	72.78
263 264	H-112 H-113	73.21 86.62
265	H-114	73.27
266	H-115	74.2
267	H-116	72.63
268	H-117	79.08
269	H-118	69.47
270 271	H-119 H-12	66.82 131.36
271	H-12 H-120	69.63
273	H-120	56.79
274	H-122	80.9
275	H-123	85.92
276	H-124	94.76
277	H-125	89.86
278 279	H-126 H-128	96.96 40.1
280	H-128	40.12
281	H-13	133.72
282	H-130	54.03
283	H-131	54.74
284	H-132	44.13
285 286	H-133 H-134	112.1 59.45
287	H-135	45.3
288	H-136	55.04
289	H-137	47.06
290	H-138	86.2
291	H-139	80.33
292 293	H-14	128.76
293	H-140 H-141	85.22 62.46
295	H-142	74.14
296	H-143	84.61
297	H-144	66.44
298	H-145	215.55
299	H-146	48.55
300 301	H-147 H-148	57.75 80.17
301	H-140 H-149	76.72
303	H-15	130.59
304	H-150	40.74
305	H-151	32.97
306	H-152	83.07
307	H-153	51.96
308 309	H-154 H-155	165.14 107.51
310	H-155 H-156	323.47
311	H-157	214.54
312	H-158	126.44
313	H-159	57.53
314	H-16	142.44
315	H-160	114.97
316 317	H-161 H-162	102.12 142.19
	H-162	43.15
	11-100	
318 319	H-164	121.19
318	H-164 H-165	
318 319	H-164	121.19

	MID TERM	
ID	Label	Fire Flow
248	H-1	61.24
249	H-10	145.4
250	H-100	78.63
251	H-101	81.68
	11-101	
252	H-102	86.32
253	H-103	78.25
254	H-104	54.29
	-	
255	H-105	55.64
256	H-106	53.9
200		
257	H-107	53.39
258	H-108	52.37
259	H-109	50.08
260	H-11	145.22
261	H-110	48.3
262	H-111	71.83
263	H-112	72.24
264	H-113	85.39
		70.00
265	H-114	72.28
266	H-115	73.18
267	H-116	71.45
268	H-117	77.65
269	H-118	68.48
270	H-119	65.88
-		
271	H-12	128.84
272	H-120	68.59
273	H-121	56.1
274	H-122	79.53
275	H-123	84.34
	11-120	
276	H-124	92.97
277	H-125	88.16
278	H-126	95.04
-		
279	H-128	39.79
280	H-129	39.84
281	H-13	131.06
282	H-130	53.36
283	H-131	54.31
284	H-132	43.9
285	H-133	110.16
286	H-134	
	□-134	58.92
287	H-135	45.03
288	H-136	54.44
289	H-137	
		46.73
290	H-138	84.63
291	H-139	78.95
292	H-14	126.15
293	H-140	83.65
294	H-141	61.62
-		
295	H-142	72.95
296	H-143	83.11
297	H-144	66.39
298	H-145	214.28
299	H-146	48.49
	H-140	
300		56.35
301	H-148	77.58
302	H-149	74.33
303		127.85
303	LI 15	
0 0 i	H-15	
304	H-150	40.23
	H-150	40.23
305	H-150 H-151	40.23 32.72
305 306	H-150 H-151 H-152	40.23 32.72 76.75
305	H-150 H-151 H-152 H-153	40.23 32.72
305 306 307	H-150 H-151 H-152 H-153	40.23 32.72 76.75 45.44
305 306 307 308	H-150 H-151 H-152 H-153 H-154	40.23 32.72 76.75 45.44 164.79
305 306 307 308 309	H-150 H-151 H-152 H-153 H-154 H-155	40.23 32.72 76.75 45.44 164.79 107.07
305 306 307 308 309	H-150 H-151 H-152 H-153 H-154 H-155	40.23 32.72 76.75 45.44 164.79
305 306 307 308 309 310	H-150 H-151 H-152 H-153 H-154 H-155 H-156	40.23 32.72 76.75 45.44 164.79 107.07 320.74
305 306 307 308 309 310 311	H-150 H-151 H-152 H-153 H-154 H-155 H-156 H-157	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91
305 306 307 308 309 310 311 312	H-150 H-151 H-152 H-153 H-154 H-155 H-156 H-157 H-158	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57
305 306 307 308 309 310 311 312	H-150 H-151 H-152 H-153 H-154 H-155 H-156 H-157 H-158	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57
305 306 307 308 309 310 311 312 313	H-150 H-151 H-152 H-153 H-154 H-155 H-156 H-157 H-158 H-159	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08
305 306 307 308 309 310 311 312 313 314	H-150 H-151 H-152 H-153 H-154 H-155 H-156 H-157 H-158 H-159 H-16	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32
305 306 307 308 309 310 311 312 313 314	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-157 H-158 H-159 H-16 H-160	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08
305 306 307 308 309 310 311 312 313 314 315	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-157 H-158 H-159 H-16 H-160	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86
305 306 307 308 309 310 311 312 313 314 315 316	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-157 H-158 H-159 H-16 H-160 H-161	40.23 32.72 76.75 45.44 164.79 107.07 20.74 213.91 137.57 57.08 139.32 112.86 100.7
305 306 307 308 309 310 311 312 313 314 315 316 317	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-156 H-157 H-158 H-159 H-16 H-160 H-161 H-162	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35
305 306 307 308 309 310 311 312 313 314 315 316 317	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-156 H-157 H-158 H-159 H-16 H-160 H-161 H-162	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35
305 306 307 308 309 310 311 312 313 314 315 316 317 318	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-156 H-157 H-158 H-159 H-16 H-160 H-161 H-162 H-163	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35 42.9
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-157 H-158 H-157 H-158 H-159 H-160 H-160 H-161 H-162 H-163 H-164	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35 42.9 118.99
305 306 307 308 309 310 311 312 313 314 315 316 317 318	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-156 H-157 H-158 H-159 H-16 H-160 H-161 H-162 H-163	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35 42.9
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-157 H-158 H-159 H-16 H-160 H-161 H-162 H-163 H-164 H-165	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35 42.9 118.99 62.96
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	H-150 H-151 H-152 H-153 H-154 H-155 H-155 H-157 H-158 H-157 H-158 H-159 H-160 H-160 H-161 H-162 H-163 H-164	40.23 32.72 76.75 45.44 164.79 107.07 320.74 213.91 137.57 57.08 139.32 112.86 100.7 143.35 42.9 118.99

MID TERM

L	ONG TER	м
ID	Label	Fire Flow
248	H-1	59.54
249	H-10	143.05
250	H-100	75.75
251 252	H-101 H-102	78.69 83.33
253	H-102	75.53
254	H-104	53.09
255	H-105	54.37
256	H-106	52.82
257	H-107 H-108	52.39
258 259	H-108 H-109	51.3 49.09
260	H-11	143.04
261	H-110	47.4
262	H-111	69.87
263	H-112	70.27
264	H-113 H-114	82.72
265 266	H-114 H-115	70.27 71.11
267	H-116	69.12
268	H-117	74.8
269	H-118	66.32
270	H-119	63.87
271	H-12	125.75
272 273	H-120 H-121	66.4 54.66
273	H-121 H-122	76.74
275	H-123	81.21
276	H-124	89.34
277	H-125	84.81
278	H-126	91.27
279	H-128 H-129	39.07
280 281	H-129 H-13	39.15 127.81
282	H-130	52
283	H-131	53.4
284	H-132	43.39
285	H-133	106.26
286	H-134 H-135	57.84
287 288	H-135 H-136	44.47 53.15
289	H-137	45.88
290	H-138	81.5
291	H-139	76.21
292	H-14	122.98
293 294	H-140 H-141	80.52 59.9
294	H-141 H-142	70.57
296	H-143	80.12
297	H-144	66.33
298	H-145	212.73
299	H-146	48.47
300 301	H-147 H-148	54.22 73.92
302	H-148 H-149	70.95
303	H-15	124.55
304	H-150	39.44
305	H-151	32.28
306	H-152	68.37
307 308	H-153 H-154	39.59 163.93
309	H-155	106.74
310	H-156	317.33
311	H-157	212.99
312	H-158	136.61
313	H-159	56.52
314 315	H-16 H-160	135.57 110.38
315	H-160 H-161	98.76
317	H-162	140.8
318	H-163	42.56
319	H-164	116.27
320	H-165	62.27
321	H-166 H-167	133.45 26.37
322	п-10 <i>1</i>	20.37

	BUILD OU	г
ID	Label	Fire Flow
248	H-1	59.54
249	H-10	146.65
250	H-100	75.75
251	H-101	78.69
252 253	H-102 H-103	83.33 75.53
253	H-103 H-104	53.09
255	H-104	54.37
256	H-105	52.82
257	H-107	52.34
258	H-108	51.3
259	H-109	49.09
260	H-11	141.24
261	H-110	47.4
262	H-111	69.87
263	H-112	70.27
264	H-113	82.72
265	H-114	70.27
266	H-115	71.11
267 268	H-116 H-117	69.12 74.8
268	H-117 H-118	66.32
209	H-110 H-119	63.87
270	H-12	127.48
272	H-120	66.4
273	H-121	54.66
274	H-122	76.74
275	H-123	81.21
276	H-124	89.34
277	H-125	84.81
278	H-126	91.27
279	H-128	39.07
280 281	H-129 H-13	39.15
282	H-13	129.14 52
283	H-131	53.4
284	H-132	43.39
285	H-133	106.26
286	H-134	57.84
287	H-135	44.47
288	H-136	53.15
289	H-137	45.88
290	H-138	81.5
291 292	H-139 H-14	76.21 124.01
292	H-14 H-140	80.52
294	H-141	59.9
295	H-142	70.57
296	H-143	80.12
297	H-144	66.31
298	H-145	212.27
299	H-146	48.45
300	H-147	61.96
301	H-148	74.71
302	H-149	70.84
<u> </u>	H-15 H-150	125.44
304	H-150 H-151	39.08 32.08
305	H-151 H-152	65.23
307	H-153	36.98
308	H-154	163.55
309	H-155	106.62
310	H-156	316.41
311	H-157	212.68
312	H-158	135.54
313	H-159	56.21
314	H-16	136.55
315	H-160	110.12
316 317	H-161 H-162	99.3 140.6
317	H-162 H-163	84.89
319	H-164	118.14
320	H-165	97.63
321	H-166	132.94
322	H-167	26.37

	EXISTING	1
ID	Label	Fire Flow
323	H-168	92.57
324	H-169	75.08
325 326	H-17 H-170	154.09 47.57
320	H-170	45.99
328	H-172	34.78
329	H-173	28.23
330	H-174	26.51
331	H-175	26.55
333 334	H-177 H-178	43.53 135.97
335	H-18	143.99
336	H-180	148.32
337	H-181	112.19
338	H-182	99.86
339 340	H-183 H-184	66.83 146.59
340	H-164 H-185	76.85
342	H-186	51.26
343	H-187	51.26
344	H-188	51.23
345	H-189	52.27
346 347	H-19	154.23
347	H-190 H-191	52.27 52.22
348	H-191 H-192	52.22
350	H-193	52.27
351	H-194	52.24
352	H-195	54.35
353	H-196	56.78
354 355	H-197 H-198	59.58 70.66
356	H-190	77.32
357	H-2	100.44
358	H-20	150.29
359	H-200	82.6
360	H-201	93.44
361 362	H-202 H-203	107.65 48.03
363	H-204	48.01
364	H-205	48.53
365	H-207	66.23
366	H-208	62.61
367 368	H-209 H-21	161.53 152.43
369	H-210	163.58
370	H-211	166.23
371	H-212	53.5
372	H-213	53.52
373	H-214	96.39
374 375	H-215 H-216	51.46 53.3
376	H-217	55.44
377	H-218	55.33
378	H-219	49.65
379	H-22	144.86
380 381	H-220 H-221	49.49
381	H-221 H-222	55.59 55.28
383	H-223	47.25
384	H-23	173.6
385	H-24	148.92
386	H-25	80.18
387 388	H-26 H-27	55.19 65.23
388	H-27 H-28	42.01
390	H-29	128.11
391	H-3	82.09
392	H-30	148.58
393	H-31	58.74
394	H-32 H-33	129.34
395 396	H-33 H-34	128.29 117.76
397	H-35	94.93
398	H-36	47.7

	IEAR TER	М
ID	Label	Fire Flow
323	H-168	91.22
324	H-169	73.91
325	H-17	153.28
326 327	H-170 H-171	47.21 45.56
328	H-171	33.75
329	H-172	27.48
330	H-174	25.84
331	H-175	25.87
333	H-177	42.15
334	H-178	136.36
335	H-18	143.11
336	H-180	147.63
337	H-181	112.08
338	H-182	99.61
339	H-183	66.51
340	H-184	149.67
341	H-185	76.79
342	H-186	51.26
343	H-187	51.26
344	H-188	51.23
345	H-189	52.26
346	H-19	153.18
347	H-190	52.27
348	H-191	52.22
349	H-192	52.24
350	H-193	52.27
351 352	H-194	52.24
353	H-195 H-196	54.34 56.78
354	H-190 H-197	59.58
355	H-197	70.66
356	H-199	77.33
357	H-2	98.52
358	H-20	148.96
359	H-200	82.63
360	H-201	93.5
361	H-202	107.78
362	H-203	47.7
363	H-204	47.69
364	H-205	48.21
365	H-207	66.23
366	H-208	62.61
367	H-209	161.43
368	H-21	151.79
369	H-210	163.48
370	H-211	166.12
371 372	H-212	51.97
372	H-213 H-214	51.97 94.6
373	H-214 H-215	94.6 51.05
375	H-215	52.86
376	H-217	55
377	H-218	55.02
378	H-219	49.39
379	H-22	145.16
380	H-220	49.25
381	H-221	102.32
382	H-222	108.8
383	H-223	156.65
384	H-23	174.05
385	H-24	149.21
386	H-25	85.75
387	H-26	57.09
388	H-27	93.08
389	H-28	76.21
390	H-29	143.57
391	H-3	80.66
	H-30	152.33
392	H-31	58.78
393		122.65
393 394	H-32	133.65
393 394 395	H-32 H-33	127.41
393 394	H-32	

		1
ID	Label	Fire Flow
323	H-168	89.86
324	H-169	72.7
325	H-17	149.75
326	H-170	46.87
327	H-171	45.09
328	H-172	30.99
329 330	H-173 H-174	25.69 24.27
330	H-174 H-175	24.27
333	H-173	37.75
334	H-178	135.88
335	H-18	139.93
336	H-180	144.33
337	H-181	110.34
338	H-182	99.35
339	H-183	66.18
340	H-184	148.72
341	H-185	76.64
342	H-186	51.22
343	H-187	51.22
344	H-188	51.19
345	H-189	52.21
346	H-19	149.54
347	H-190	52.21
348	H-191	52.16
349	H-192	52.18
350 351	H-193	52.21 52.18
	H-194	
352 353	H-195 H-196	54.28 56.71
353	H-196 H-197	59.5
355	H-197 H-198	70.55
356	H-190	77.21
357	H-2	96.57
358	H-20	145.14
359	H-200	82.48
360	H-201	93.29
361	H-202	107.49
362	H-203	47.33
363	H-204	47.33
364	H-205	47.84
365	H-207	66.13
366	H-208	62.52
367	H-209	161.25
368	H-21	148.22
369	H-210	163.3
370	H-211	165.94
371	H-212	45.7
372	H-213	45.72
373	H-214	92.81
374 375	H-215 H-216	50.6 52.39
375	H-216 H-217	52.39 54.52
376	H-217 H-218	54.52 54.8
378	H-210 H-219	49.23
379	H-219	142.36
380	H-220	49.14
381	H-221	101.76
382	H-222	108.38
383	H-223	155.98
384	H-23	170.19
385	H-24	148.36
386	H-25	86.89
387	H-26	57.41
388	H-27	102.83
389	H-28	99.54
390	H-29	145.21
391	H-3	79.2
392	H-30	152.03
393	H-31	58.7
394	H-32 H-33	133.29
395	H-33 H-34	124.74 110.16
396 397	H-34 H-35	91.87
398	H-35	46.54
	11-00	-0.04

L	ONG TER	М
ID	Label	Fire Flow
323 324	H-168 H-169	86.92 70.29
325	H-109 H-17	145.47
326	H-170	45.98
327	H-171	44.07
328 329	H-172 H-173	27.97
330	H-173	23.53 22.3
331	H-175	22.33
333	H-177	33.43
334	H-178 H-18	135.25 136.03
335 336	H-18 H-180	140.38
337	H-181	108.1
338	H-182	97.67
339	H-183	65.37
340 341	H-184 H-185	147.29 75.81
342	H-186	51.17
343	H-187	51.17
344	H-188	51.13
345 346	H-189 H-19	52.13 145.07
340	H-190	52.13
348	H-191	52.08
349	H-192	52.1
350 351	H-193	52.13 52.1
352	H-194 H-195	52.1 54.19
353	H-196	56.61
354	H-197	59.39
355	H-198	70.41
356 357	H-199 H-2	77.03 92.72
358	H-20	140.41
359	H-200	82.27
360	H-201	93.01
361 362	H-202 H-203	107.11 46.49
363	H-204	46.5
364	H-205	47
365	H-207 H-208	66.01
366 367	H-208 H-209	62.41 157.6
368	H-21	143.9
369	H-210	159.57
370	H-211	162.17
371 372	H-212 H-213	39.83 39.82
373	H-214	89.16
374	H-215	49.66
375	H-216	51.37
376 377	H-217 H-218	53.5 54.36
378	H-219	48.88
379	H-22	138.78
380	H-220	48.76
381 382	H-221 H-222	101.47 108.06
383	H-223	155.36
384	H-23	165.72
385	H-24	145.89
386 387	H-25 H-26	86.22 57.17
388	H-20 H-27	103.2
389	H-28	103.49
390	H-29	144.07
391	H-3 H-30	76.3
392 393	H-30 H-31	151.48 58.61
394	H-32	132.5
395	H-33	121.47
396	H-34	101.36
397 398	H-35 H-36	89.4 45.49
000	.1.00	10.40

-	BUILD OU	
ID	Label	Fire Flow
323	H-168	86.92
324	H-169	70.29
325	H-17	146.24
326	H-170	45.98
327	H-171	44.07
328	H-172	26.57
329	H-173	22.51
330	H-174	21.38
331	H-175	21.42
333	H-177	31.54
334	H-177	
		135.06
335	H-18	136.49
336	H-180	141.46
337	H-181	108.55
338	H-182	118.18
339	H-183	95.4
340	H-184	146.78
341	H-185	75.27
342	H-186	51.15
343	H-187	51.15
344	H-188	51.11
345	H-189	52.1
346	H-19	145.33
340	H-190	52.1
347	H-190 H-191	52.05
348		
	H-192	52.07
350	H-193	52.1
351	H-194	52.07
352	H-195	54.16
353	H-196	56.58
354	H-197	59.36
355	H-198	70.36
356	H-199	76.96
357	H-2	92.72
358	H-20	140.25
359	H-200	82.2
360	H-201	92.92
361	H-202	106.99
362	H-203	46.49
363	H-204	46.5
364	H-205	47
365	H-207	65.97
366		
	H-208	62.37
367	H-209	162.67
368	H-21	144.45
369	H-210	164.7
370	H-211	167.36
371	H-212	37.17
372	H-213	37.16
373	H-214	89.16
374	H-215	49.66
375	H-216	51.37
376	H-217	53.5
377	H-218	94.82
378	H-219	97.27
379	H-22	139.46
380	H-220	75.58
381	H-221	101.36
382	H-221	107.94
	H-222 H-223	155.16
383		
201	H-23	164.98 144.87
384		
385	H-24	
385 386	H-25	85.77
385 386 387	H-25 H-26	85.77 56.91
385 386 387 388	H-25 H-26 H-27	85.77 56.91 103.25
385 386 387 388 389	H-25 H-26 H-27 H-28	85.77 56.91 103.25 110.46
385 386 387 388	H-25 H-26 H-27	85.77 56.91 103.25
385 386 387 388 389	H-25 H-26 H-27 H-28	85.77 56.91 103.25 110.46
385 386 387 388 389 390	H-25 H-26 H-27 H-28 H-29	85.77 56.91 103.25 110.46 143.46
385 386 387 388 389 390 391 392	H-25 H-26 H-27 H-28 H-29 H-3 H-30	85.77 56.91 103.25 110.46 143.46 76.3 151.26
385 386 387 388 389 390 391 392 393	H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31	85.77 56.91 103.25 110.46 143.46 76.3 151.26 58.58
385 386 387 388 389 390 391 392 393 394	H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-32	85.77 56.91 103.25 110.46 143.46 76.3 151.26 58.58 132.2
385 386 387 388 389 390 391 392 393 394 395	H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-32 H-33	85.77 56.91 103.25 110.46 143.46 76.3 151.26 58.58 132.2 121.72
385 386 387 388 389 390 391 392 393 394	H-25 H-26 H-27 H-28 H-29 H-3 H-30 H-31 H-32	85.77 56.91 103.25 110.46 143.46 76.3 151.26 58.58 132.2

	EXISTING	
ID	Label	Fire Flow
399	H-37	167.98
400	H-38	220.65
401	H-39	82.31
402	H-4	56.27
403	H-40	133.74
404	H-41	168.14
405	H-42	129.84
406 407	H-43 H-44	46.41 51.67
407	H-44 H-45	134.08
409	H-46	134.78
410	H-47	34.12
411	H-48	56.58
412	H-49	69.85
413	H-5	95.75
414	H-50	66.53
415	H-51	69.11
416	H-52	127.57
417	H-53	75.52
418	H-54	80.63
419	H-55	64.52
420 421	H-56 H-57	83.75 80.67
421	H-57 H-58	95.39
422	H-58	104.8
424	H-60	145.78
425	H-61	132.95
426	H-62	119.52
427	H-63	102.04
428	H-64	64.14
429	H-65	69.27
430	H-66	59.32
431	H-67	55.63
432	H-68	51.49
433 434	H-69	49.87
434	H-7 H-70	87.27 47.07
435	H-70 H-71	47.07
437	H-72	84.23
438	H-73	56.46
439	H-74	38.94
440	H-75	139.28
441	H-76	102.33
442	H-77	27.51
443	H-78	30.39
444	H-79	44.47
445	H-8	63.14
446	H-80	36.15
447 448	H-81	30.67
448	H-82 H-83	81.11 92.66
449	H-83 H-84	92.00 59.85
450	H-85	72.63
452	H-86	90.94
453	H-87	83.91
454	H-88	101.56
455	H-89	123.45
456	H-9	136.26
457	H-90	54.11
458	H-91	37.94
459	H-92	84.64
460	H-93	83.69
461	H-94	63.23
462	H-95	74.83
463	H-96	92.39
		QC 17
464	H-97 H-98	86.17
	H-97 H-98 H-99	86.17 74.39 58.37

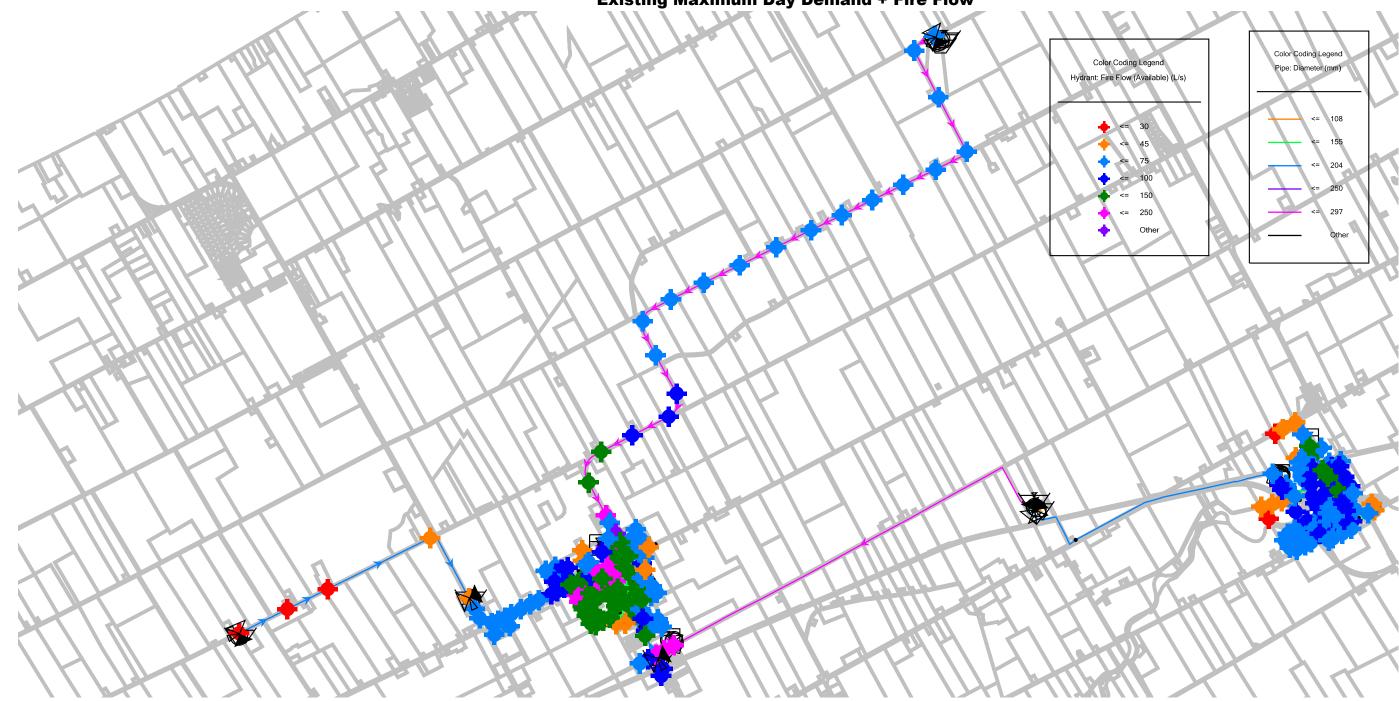
NEAR TERM		
ID	Label	Fire Flow
399	H-37	160.51
400	H-38	218.98
401	H-39	77.31
402	H-4	55.86
403 404	H-40 H-41	134.11 167.61
404	H-41 H-42	128.64
406	H-43	46.05
407	H-44	50.82
408	H-45	133.43
409	H-46	134.08
410	H-47	34.07
411	H-48	56.48
412	H-49	69.87
413	H-5	95.62
414 415	H-50 H-51	66.53 69.14
415	H-51	130.96
410	H-52 H-53	73.78
418	H-54	78.61
419	H-55	63.2
420	H-56	81.3
421	H-57	75.47
422	H-58	89.61
423	H-59	98.74
424	H-60	145.14
425 426	H-61 H-62	134.14 119.83
426 427	H-62 H-63	119.83
428	H-64	59.58
429	H-65	64.47
430	H-66	55
431	H-67	54.13
432	H-68	49.96
433	H-69	48.33
434	H-7	87.16
435	H-70	45.61
436 437	H-71 H-72	43.82 84.12
438	H-73	84.72
439	H-74	51.52
440	H-75	138.69
441	H-76	100.41
442	H-77	27.47
443	H-78	30.36
444	H-79	44.33
445	H-8	63.05
446 447	H-80 H-81	35.99 30.44
447	H-81 H-82	30.44 80.14
449	H-83	91.3
450	H-84	59.4
451	H-85	71.75
452	H-86	89.33
453	H-87	82.49
454	H-88	99.58
455	H-89	121.59
456	H-9	136.21
457 458	H-90 H-91	53.82 37.87
450 459	H-91 H-92	37.87 83.13
460	H-93	82.22
461	H-94	62.46
462	H-95	73.67
463	H-96	90.65
464	H-97	84.62
465	H-98	73.23
466	H-99	57.66
1154	J-270	54.53
1155	J-271	54.62
1156 1157	J-272	54.6 82.47
1107	J-273	81.22
1158		
1158 1160	J-274 J-276	238.43

		Λ
ID	Label	Fire Flow
399	H-37	150.49
400	H-38	206.79
401	H-39	77.25
402	H-4	55.42
403	H-40	132.9
404	H-41	163.85
405	H-42	125.76
406	H-43	45.46
407	H-44	49.7
408	H-45	130.71
409	H-46	131.26
410	H-47	33.91
411	H-48	56.23
412	H-49	78.52
413 414	H-5	95.29 79.19
	H-50	
415	H-51 H-52	97.83 130.24
416	-	
417 418	H-53 H-54	71.63
418 419	-	76.01
419 420	H-55 H-56	61.5 78.22
420	H-56 H-57	78.22 69.41
421	H-57 H-58	69.41 82.89
422	H-58 H-59	82.89 91.59
423	H-59 H-60	141.92
424	H-60 H-61	141.92
425	H-61 H-62	131.85
426	H-62	118.58
427	H-64	53.94
428	H-65	58.72
429	H-65	49.52
430	H-67	49.52
431	H-67	40.15
432	H-69	43.77
433	H-09	86.88
434	H-70	40.42
435	H-70	39.04
430	H-71	83.89
438	H-72	94.28
439	H-74	55.45
440	H-75	135.51
440	H-76	98.48
442	H-77	27.47
442	H-78	30.35
444	H-79	44.09
445	H-8	62.95
446		35.87
440	H-80 H-81	30.25
447	H-82	79.15
440	H-82	89.89
449	H-83	58.91
450	H-85	70.85
452	H-86	87.68
452	H-80	81.11
454	H-88	97.57
455	H-89	119.71
456	H-9	136.26
457	H-90	53.56
458	H-90 H-91	37.77
459	H-91 H-92	81.59
460	H-93	80.74
461	H-94	61.67
462	H-94	72.48
463	H-96	88.91
464	H-97	83.05
465	H-98	72.04
465	H-98	56.95
1151	J-267	45.99
1154	J-207 J-270	46.09
1154	J-270 J-271	46.1
		+0.1
	1070	
1156	J-272	46.1
	J-272 J-273 J-274	46.1 76.19 78.24

L	ONG TER	М
ID _	Label	Fire Flow
399	H-37	138.02
400	H-38	191.33
401	H-39	77.17
402	H-4	54.53
403	H-40	131.04
404 405	H-41 H-42	159.44 122.26
405	H-42	44.59
407	H-44	48.01
408	H-45	127.42
409	H-46	127.88
410	H-47	33.7
411	H-48	55.69
412 413	H-49	87.72
413	H-5 H-50	93.92 100.69
415	H-51	98.88
416	H-52	127.77
417	H-53	68.5
418	H-54	72.33
419	H-55	59.01
420	H-56	73.88
421 422	H-57 H-58	61.26 74.16
423	H-59	82.63
424	H-60	138.15
425	H-61	129.08
426	H-62	116.26
427	H-63	111.95
428	H-64	46.44
429 430	H-65 H-66	50.97 42.2
431	H-67	40.18
432	H-68	38.25
433	H-69	37.26
434	H-7	85.94
435	H-70	35.56
436 437	H-71 H-72	34.46 82.73
438	H-73	94.35
439	H-74	55.56
440	H-75	132.05
441	H-76	94.61
442 443	H-77 H-78	27.42 30.29
444	H-79	43.52
445	H-8	62.24
446	H-80	35.65
447	H-81	29.97
448	H-82	77.09
449 450	H-83 H-84	87.06
450	H-85	57.75 68.97
452	H-86	84.41
453	H-87	78.27
454	H-88	93.61
455	H-89	115.91
456	H-9	133.36
457 458	H-90 H-91	52.87
458	H-91 H-92	37.54 78.5
460	H-93	77.72
461	H-94	60.03
462	H-95	70.1
463	H-96	85.37
464 465	H-97 H-98	79.88 69.66
466	H-99	55.47
1151	J-267	40.05
1152	J-268	41.17
1153	J-269	41.31
1154 1155	J-270 J-271	40.14 40.14
1156	J-272	40.14
1157	J-273	67.85

	BUILD OU	Г
ID	Label	Fire Flow
399	H-37	133.07
400	H-38	186.06
401	H-39	77.15
402	H-4	54.53
403	H-40	130.36
403	H-41	158.54
-	-	
405	H-42	121.5
406	H-43	44.22
407	H-44	68.52
408	H-45	128.72
409	H-46	128.92
410	H-47	115.37
411	H-48	90.38
412	H-49	86.67
413	H-5	93.48
414	H-50	99.29
415	H-51	97.56
416	H-52	126.78
417	H-53	68.56
-		
418	H-54	71.87
419	H-55	59.88
420	H-56	70.53
421	H-57	58.19
422	H-58	70.7
423	H-59	78.88
424	H-60	139.2
425	H-61	128.48
426	H-62	118.93
427	H-63	110.78
428	H-64	43.56
429	H-65	48.02
430	H-66	39.4
-		
431	H-67	37.5
432	H-68	35.78
433	H-69	34.92
434	H-7	85.32
435	H-70	33.43
436	H-71	32.46
437	H-72	107.12
438	H-73	93.23
439	H-74	55.08
440	H-75	132.74
441	H-76	94.61
442	H-77	27.42
443	H-78	30.29
	-	
444	H-79	43.52
445	H-8	61.57
446	H-80	35.64
447	H-81	29.97
448	H-82	77.09
449	H-83	87.06
450	H-84	57.75
451	H-85	68.97
452	H-86	84.41
453	H-87	78.27
454	H-88	93.61
455	H-89	115.91
456	H-9	144.74
450	H-9 H-90	52.87
	H-90 H-91	
458	-	37.54
459	H-92	78.5
460	H-93	77.72
461	H-94	60.03
462	H-95	70.1
463	H-96	85.37
464	H-97	79.88
465	H-98	69.66
466	H-99	55.47
-	J-267	37.37
1151		38.38
1151 1152	/h×	
1152	J-268	
1152 1153	J-269	38.51
1152 1153 1154	J-269 J-270	38.51 37.44
1152 1153 1154 1155	J-269 J-270 J-271	38.51 37.44 37.44
1152 1153 1154	J-269 J-270	38.51 37.44

	EXISTING	
ID	Label	Fire Flow

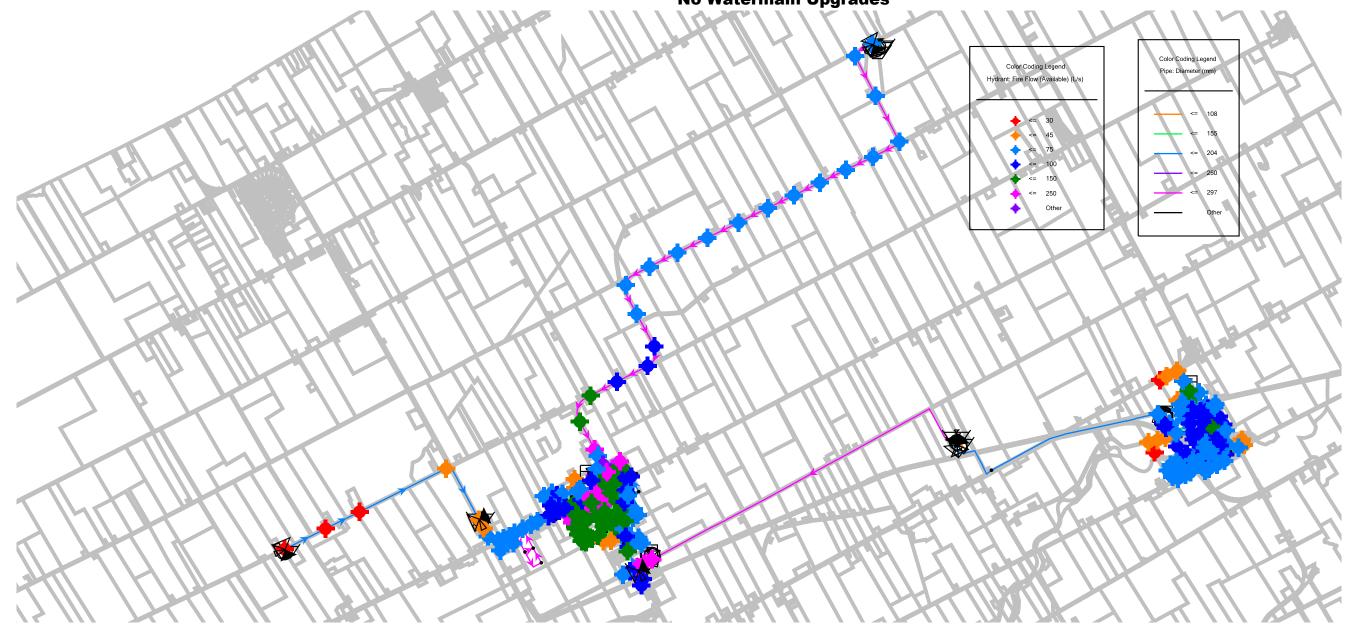

Ν	IEAR TER	M
ID	Label	Fire Flow
1163	J-279	78.95
1164	J-280	77.58

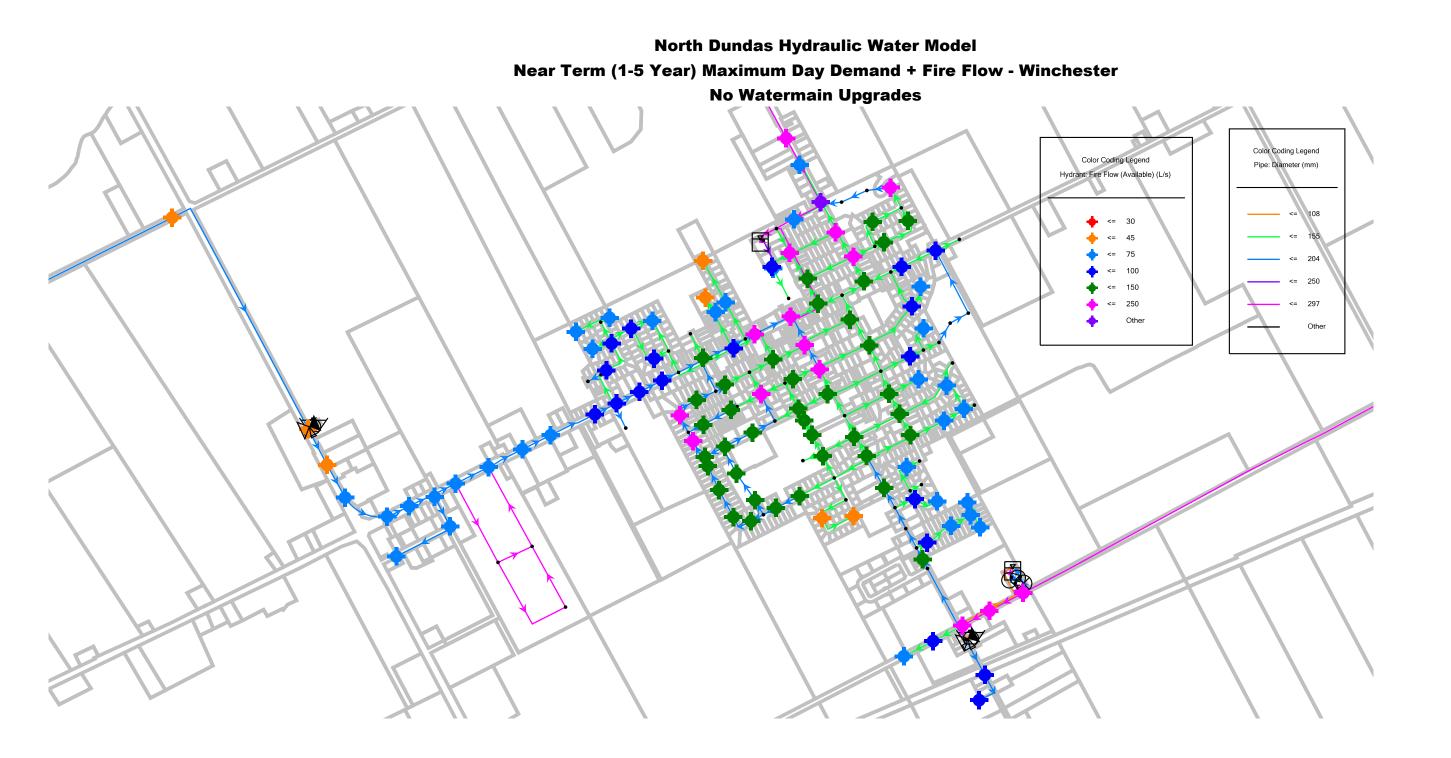
	MID TERN	1
ID	Label	Fire Flow
1161	J-277	181.29
1163	J-279	111.79
1164	J-280	106.54
1165	J-281	108.2
1169	J-285	128.13
1171	J-287	45.98

LONG TERM						
ID	Label	Fire Flow				
1158	J-274	73.05				
1160	J-276	235.74				
1161	J-277	180.39				
1163	J-279	119.27				
1164	J-280	112.35				
1165	J-281	115.89				
1166	J-282	106.98				
1169	J-285	125.55				
1170	J-286	116.86				
1171	J-287	40.04				

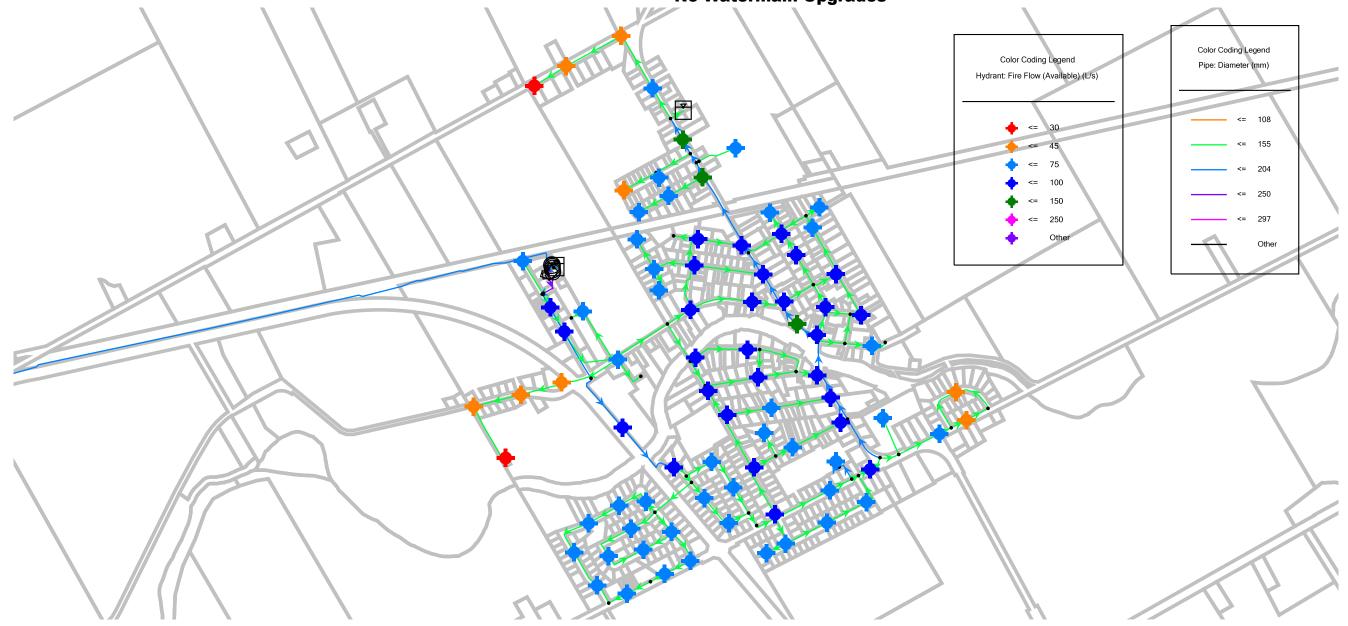
	BUILD OUT							
ID	Label	Fire Flow						
1158	J-274	70.25						
1159	J-275	70.69						
1160	J-276	235.32						
1161	J-277	180.13						
1162	J-278	97.07						
1163	J-279	115.21						
1164	J-280	110.64						
1165	J-281	114.24						
1166	J-282	105.44						
1167	J-283	97.1						
1168	J-284	128.02						
1169	J-285	131.83						
1170	J-286	121.24						
1171	J-287	37.36						
1205	J-289	99.47						

North Dundas Hydraulic Water Model Existing Maximum Day Demand + Fire Flow

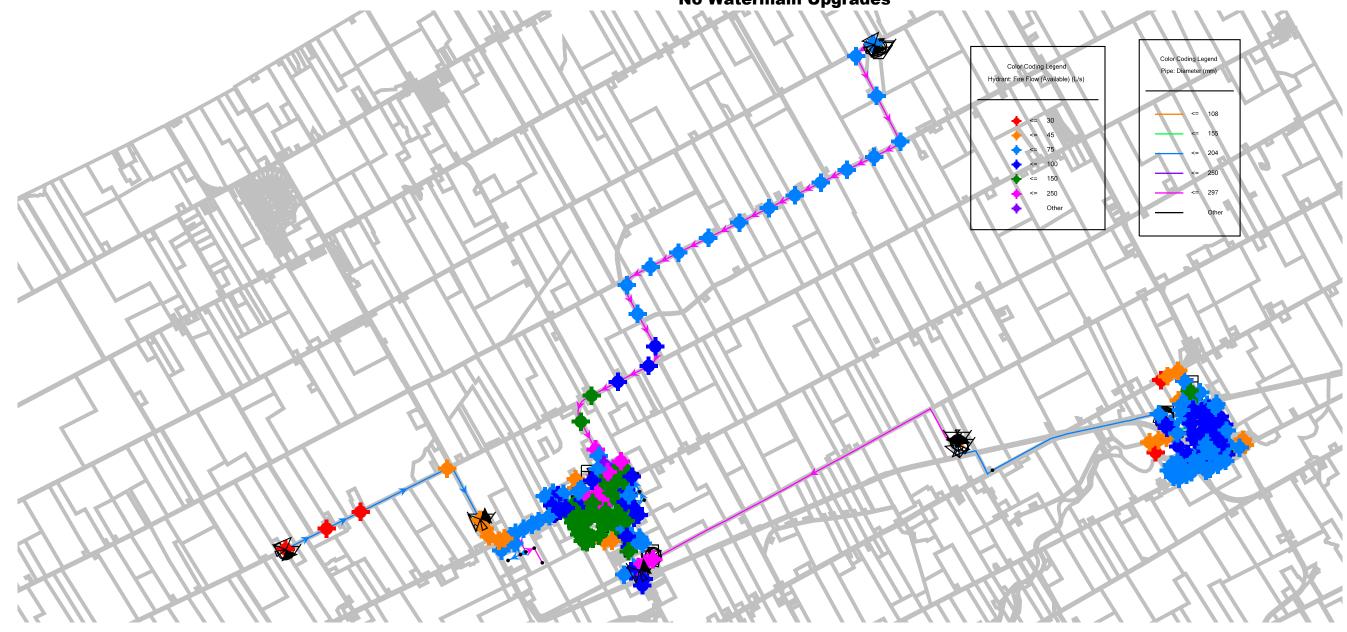


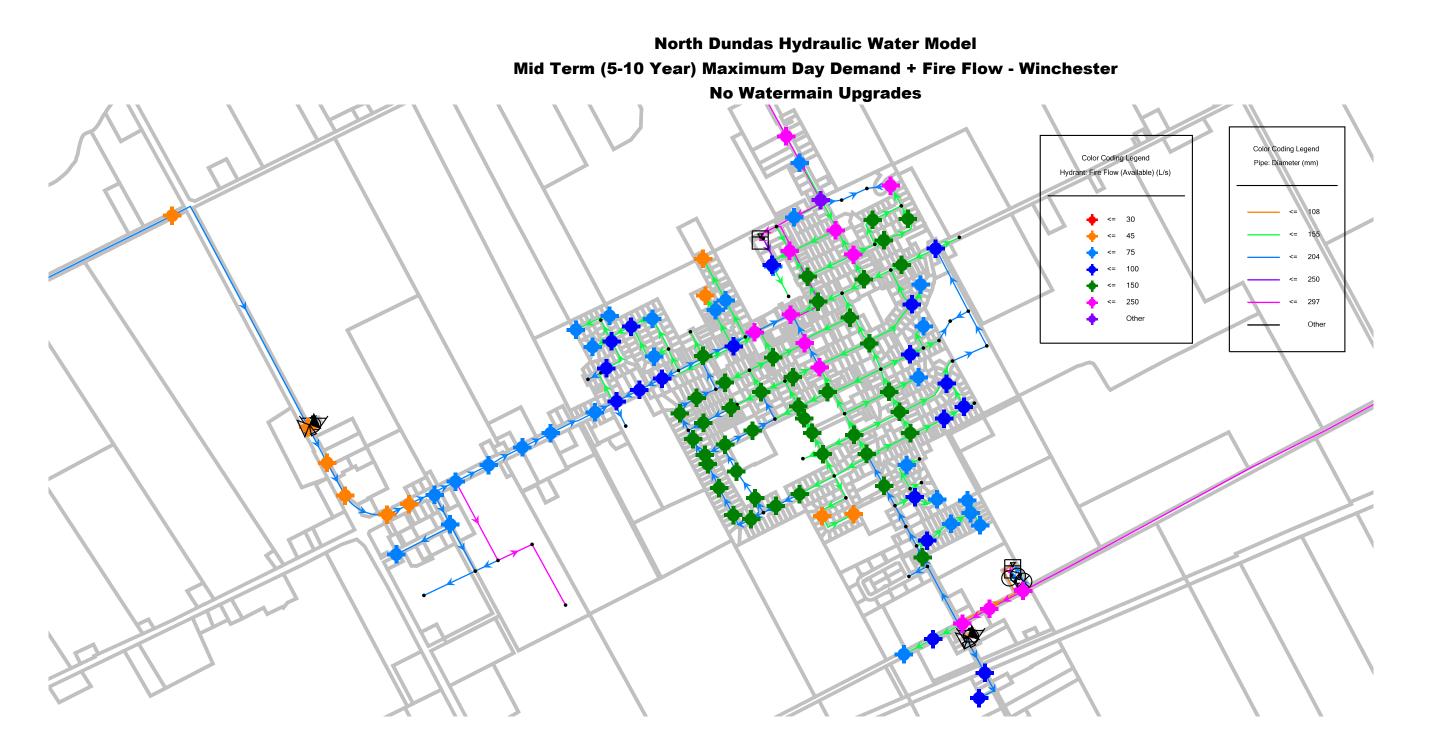


North Dundas Hydraulic Water Model Existing Maximum Day Demand + Fire Flow - Chesterville

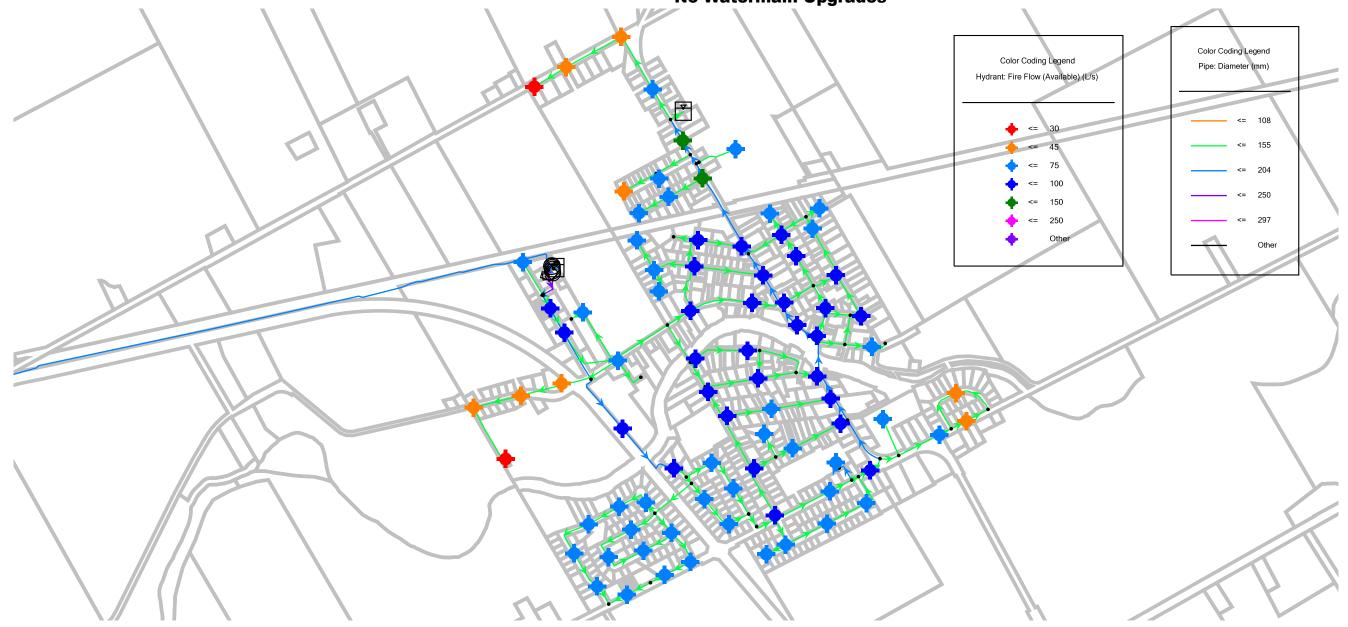


North Dundas Hydraulic Water Model Near Term (1-5 Year) Maximum Day Demand + Fire Flow No Watermain Upgrades

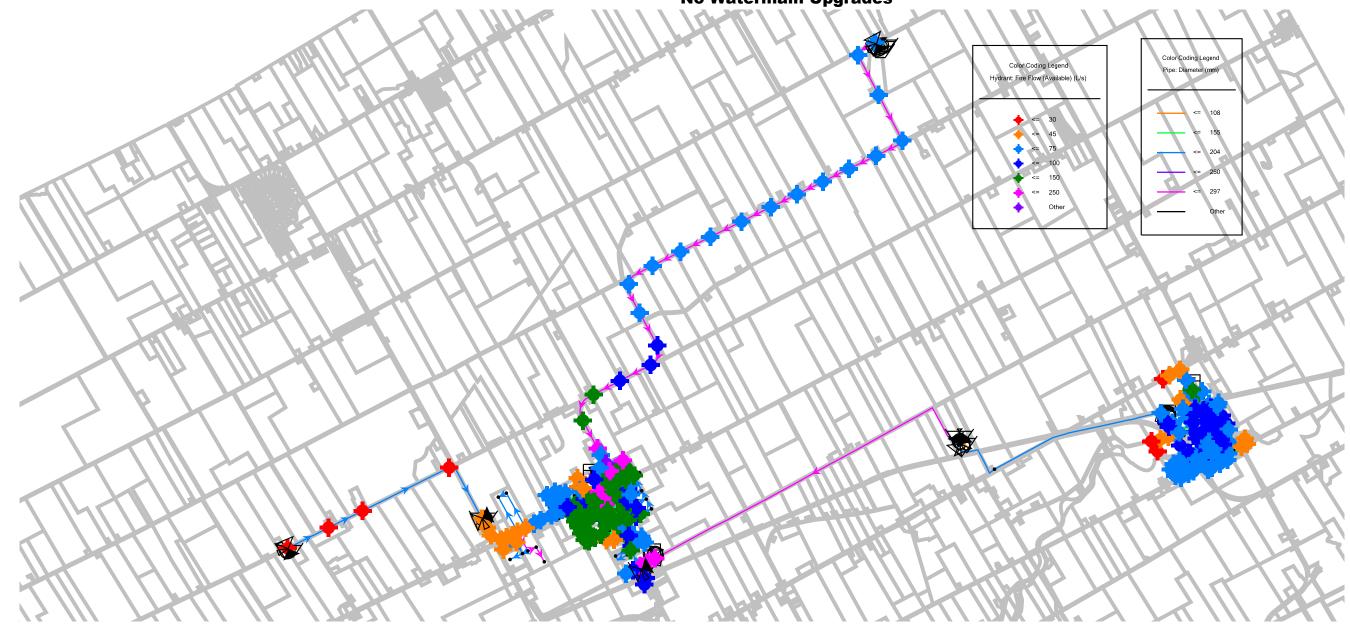


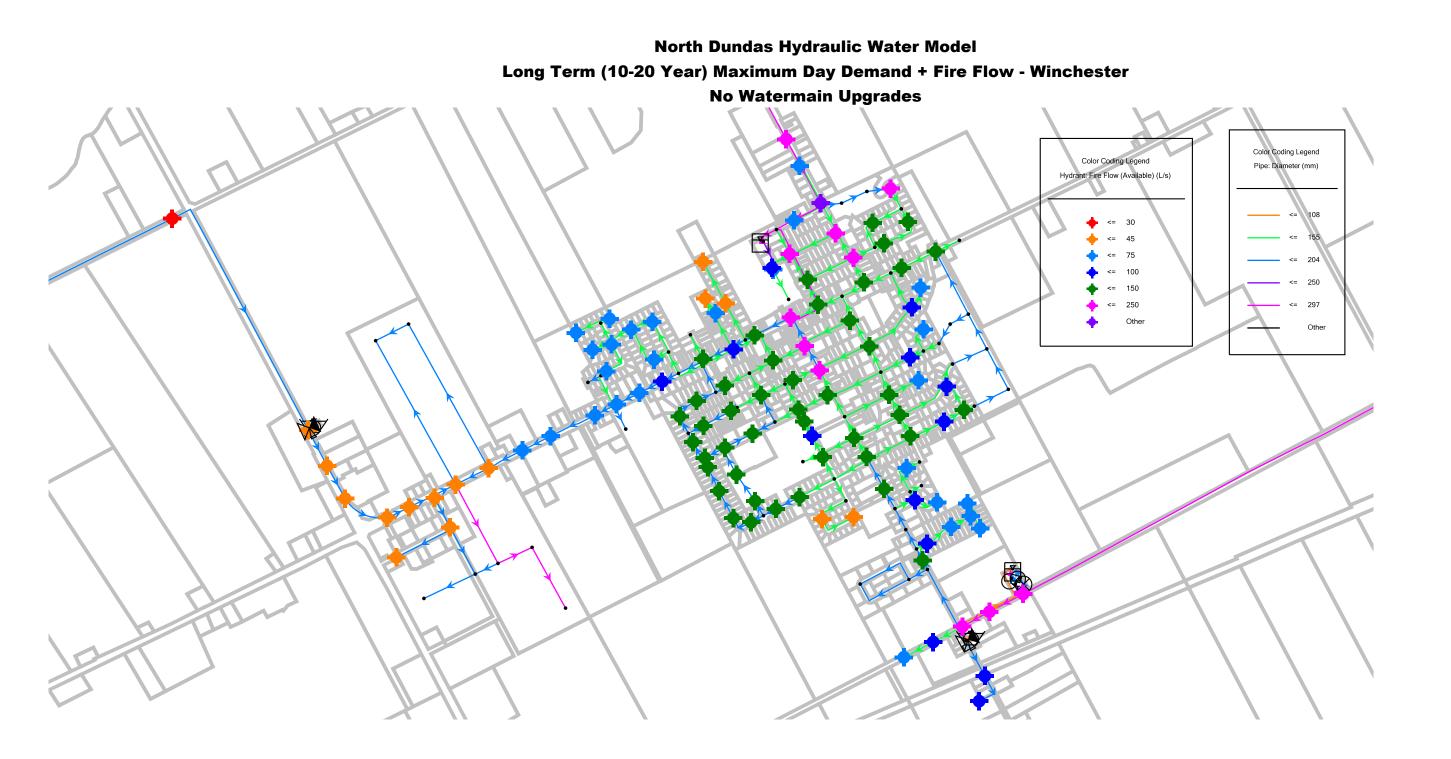


North Dundas Hydraulic Water Model Near Term (1-5 Year) Maximum Day Demand + Fire Flow - Chesterville No Watermain Upgrades

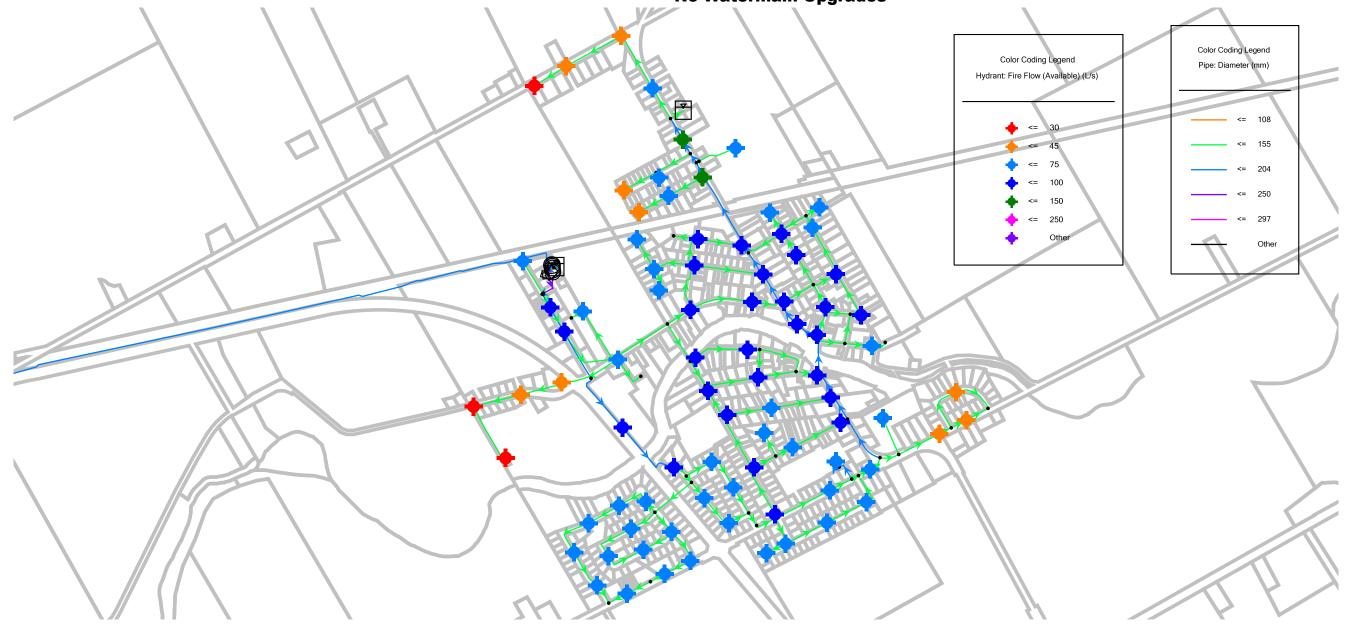


North Dundas Hydraulic Water Model Mid Term (5-10 Year) Maximum Day Demand + Fire Flow No Watermain Upgrades

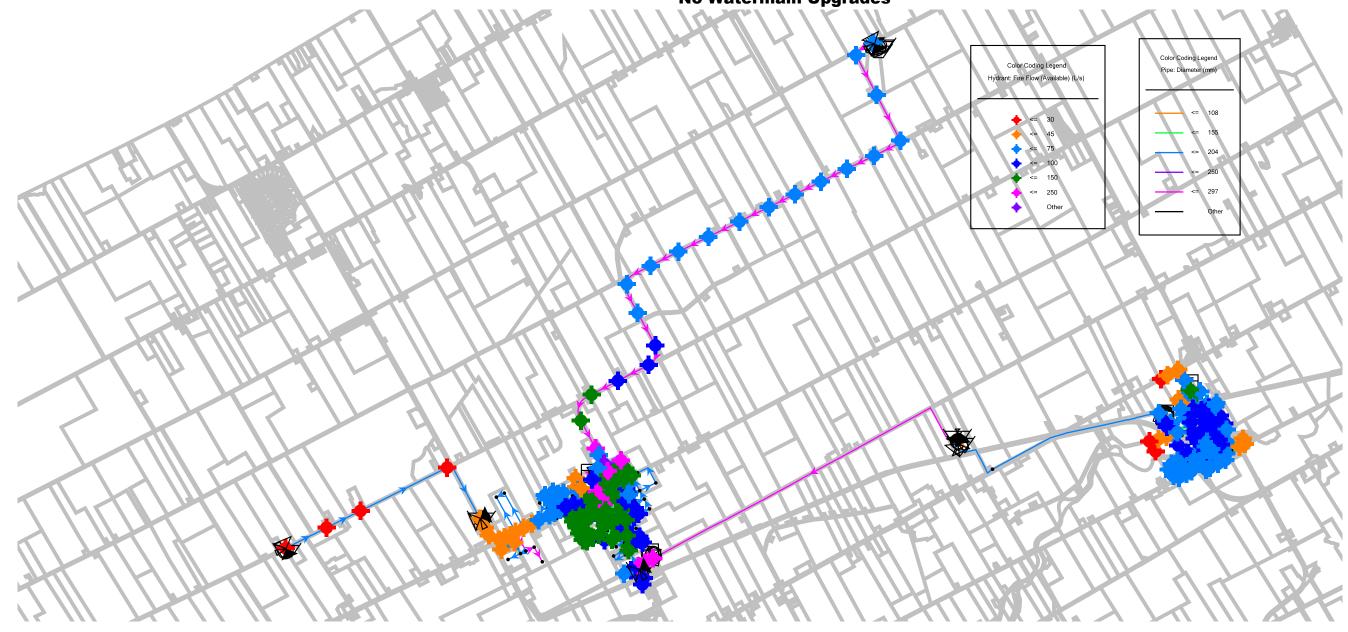




North Dundas Hydraulic Water Model Mid Term (5-10 Year) Maximum Day Demand + Fire Flow - Chesterville No Watermain Upgrades



North Dundas Hydraulic Water Model Long Term (10-20 Year) Maximum Day Demand + Fire Flow No Watermain Upgrades



North Dundas Hydraulic Water Model Long Term (10-20 Year) Maximum Day Demand + Fire Flow - Chesterville No Watermain Upgrades

North Dundas Hydraulic Water Model Build Out (20+ Year) Maximum Day Demand + Fire Flow No Watermain Upgrades

North Dundas Hydraulic Water Model Build Out (20+ Year) Maximum Day Demand + Fire Flow - Chesterville No Watermain Upgrades

Page 1 of 3

North Dundas (Winchester and Chesterville) - Maximum Day Demand + Fire Flow - With 300mm Main St - Fred St Loop (Near Term +) and 300mm St. Lawrence St Upgrade (Mid Term +)

D Late Perfam D Late Intro D <thd< th=""> <thd< th=""> D <thd< th=""><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>St. Lawrence</th><th></th><th></th><th></th></thd<></thd<></thd<>	1											St. Lawrence			
10. 626 11. <th>10</th> <th>EXISTING</th> <th>Eine Eleve</th> <th></th> <th>NEAR TERM</th> <th></th> <th>15</th> <th>MID TERM</th> <th>Fire Flow</th> <th></th> <th></th> <th></th> <th></th> <th>BUILD OUT</th> <th></th>	10	EXISTING	Eine Eleve		NEAR TERM		15	MID TERM	Fire Flow					BUILD OUT	
BAD L.U. L.U. L.U. L.U. D.U. D.U. <thd.u.< th=""> <thd.u.< th=""> <thd.u.< th=""> D.U</thd.u.<></thd.u.<></thd.u.<>															
Sec. Hold Hold <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
51 LUI AUG NAGE NAGE RAGE RAG															
193 14.03 90.91 253 14.03 70.92 14.03 70.93 <th70.93< th=""> 70.93 70.9</th70.93<>															
32. 14.46 95.0 124 110 926 110<	252	H-102	89.26	252	H-102	87.8	252	H-102	86.32	252	H-102	83.33	252	H-102	83.33
Sco Holo Stat Stat Holo															
200 H-106 910 H-206 926 H-206 810 820 H-206 810 820 H-206															
20 11407 44.0 20 11407 32.0 12.0 11407 32.0 12.0 14.00 32.0 12.0 14.00 32.0 12.0 14.00 32.0 12.0 <															
Base Line Sol Line Line <thline< th=""> <thline< th=""> <thline< th=""></thline<></thline<></thline<>															
200 H-00 9.00 7.00															
200 11.1 14.15 200 11.1 20.5 20.5 11.1 20.5 20.5 11.1 20.5 20.5 11.1 20.5 20.5 11.1 20.5 20.5 11.1 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5															
280 h.1.10 4000 201 h.1.10 400 201 h.1.10 60.2 201 41.10 40.2 201 41.10 60.2 201 41.10 60.2 201 41.10 60.2 201 41.10 60.2 201 41.10 60.2 201 41.10 60.2 201 41.10 60.2 201 41.10 60.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 201 41.10 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 <th70.2< th=""> 70.2 70.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th70.2<>															
300 41-10 74.10 74.20 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 74.00 74.10 7	261	H-110	49.06	261	H-110	48.7	261	H-110	48.3	261	H-110		261	H-110	47.4
Beth H113 E72 E81 H113 B522 E84 H114 B727 E84 H114 B717 H116 B718 B718 <td></td> <td>262</td> <td></td> <td></td>													262		
285 H-114 7.12 285 H-114 7.13 285 H-114 8.13 7.11 8.13 7.11 7.13 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 7.11 8.14 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
286 H-110 73.8 286 H-110 73.8 286 H-110 70.11 70.0 H-110 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0															
287 H+116 7.26 287 H+116 7.46 287 H+116 7.46 287 H+116 7.46 280 H+117 7.46 280 H+117 7.41 280 H+117 7.41 280 H+117 7.42 280 H+117 7.42 280 H+117 7.42 280 H+117 7.42 280 H+117 7.41 140 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412 7.41 1412															
Base H-117 Role Base H-117 Form Base H-118 Form Form H-118 Form Form Form H-118 Form Fo															
389 H+118 970 H+118 68.42 290 H+118 68.32 290 H+12 68.41 270 H+12 68.41 <th270< th=""> <th28< th=""> <th28< th=""></th28<></th28<></th270<>															
271 HL2 HL2 <td></td> <td>269</td> <td></td> <td></td>													269		
272 H+120 708 272 H+120 88.80 272 H+120 68.4 272 H+120 68.4 273 H+120 57.40 127 H+120 58.40 275 H+121 58.40 275 H+121 58.41 275 H+124 58.45 276 H+126 58.45 276 H+126 58.57 276 H+126 58.57 <t< td=""><td></td><td></td><td>67.78</td><td></td><td>H-119</td><td></td><td></td><td></td><td>65.88</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			67.78		H-119				65.88						
273 H+12 574 H+12 561 273 H+12 561 273 H+12 564 276 H+12 824 274 H+22 824 275 H+12 854 275 H+12 854 275 H+12 854 276 H+12 854 177 H+12 854 176 H+12 854 116 </td <td></td>															
274 H+02 873 774 H+02 785 775 H+02 787 H+12 787 H+125 81.31 777 H+126 80.10 777 H+126 80.11 777 H+126 80.11 777 H+126 80.17 778 1110 80.13															
275 H-123 87.64 276 H-123 86.14													273		
276 H-124 66-54 276 H-124 92.74 H-124 92.74 H-124 93.84 277 H-125 93.84 277 H-125 66.65 277 H-125 66.66 277 H-125 66.16 277 H-125 67.15 77 H-125 77 H-125 <td></td>															
1276 H-126 95.17 177 H-126 84.81 277 H-126 84.81 277 H-126 84.81 277 H-126 84.81 277 H-126 84.81 177 H-136 84.81 178 178 183 183 183 183 183 183 183 183 183 183 183 183 <td></td>															
278 H128 98.8 278 H128 91.28 91.27 H128 91.27 H138 91.27 91.37 91.37 92.28 H138 92.28 H148 92.28															
279 H-128 40.35 279 H-128 40.17 279 H-128 39.75 279 H-128 39.75 279 H-128 39.75 279 H-128 39.75 280 H-138 39.75 280 H-138 39.75 280 H-138 39.75 280 H-137 39.75 280 H-137 39.75 280 H-137 39.75 280 H-138 39.75 280 H-138 39.75 280 H-137 39.75 280 H-137 39.75 280 H-137 39.75 280 H-138 39.75 280 H-137 45.85 280 H-138 46.73 280	278									278					
281 H-13	279	H-128	40.35	279	H-128	40.1	279	H-128	39.79	279	H-128	39.07	279	H-128	39.07
222 H-130 54.64 222 H-130 53.60 222 H-130 53.60 222 H-130 52. 222 H-130 52. 223 H-130 52. 223 H-130 53.60 223 H-131 53.61 223 H-131 53.61 223 H-132 43.30 226 H-132 43.30 226 H-131 63.61 226 H-132 43.30 226 H-131 63.61 226 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
228 H-131 55.16 228 H-131 64.71 283 H-131 54.31 284 H-132 43.32 2265 H-133 114.03 285 H-132 14.33 110.16 284 H-132 43.39 284 H-132 43.49 284 H-132 43.49 284 H-133 45.41 284 H-144 67.44 45.41 286 H-133 45.41 286 H-133 45.41 45.41 286 H-137 45.85 280 H-138 81.53 280 H-138 81.53 280 H-138 81.53 280 H-138 81.53 280 H-148 44.41 44.42 14.42 14.42 14.42 14.42 14.42 14.42 14.42 14.42<															
1284 H-132 44.13 1284 H-132 44.13 1284 H-132 44.39 285 H-133 1612 285 H-133 1612 285 H-133 1612 285 H-134 150 285 H-137 150 150 286 H-137 150 150 286 H-137 150 150 160 150 160 150 160 150 160 150 160 150<															
286 H-133 H14.03 286 H-133 H114.03 286 H-133 H115 H116 H115															
286 H-134 59.95 286 H-134 59.92 286 H-135 45.51 287 H-135 45.51 287 H-135 45.51 287 H-135 45.53 287 H-135 45.53 287 H-135 45.53 287 H-135 45.63 287 H-135 45.63 287 H-135 45.63 287 H-135 45.64 288 H-136 45.64 288 H-137 45.86 288 H-137 45.86 288 H-137 45.86 289 H-141 16.81 289 H-141 16.81 280 H-144 16.81 280 H-144 16.81 280															
227 H-135 45.51 227 H-136 45.03 287 H-135 44.47 287 H-136 55.04 288 H-137 47.4 288 H-136 65.15 288 H-136 55.15 288 H-137 45.8 289 H-138 46.5 289 H-138 46.5 289 H-138 45.5 289 H-138 45.6 289 H-138 46.5 289 H-138 46.5 289 H-138 46.5 289 H-138 76.5 289 H-140 76.5 289 H-140 76.5 289 H-140 76.9 284 H-141 69.7 284 H-141 69.7 289 H-142 70.5 289 H-142 70.5 289 H-142 70.5 286 H-142 70.7 286 H-142 70.5 289															
228 H-136 55.62 228 H-136 54.44 288 H-136 51.51 288 H-136 51.51 288 H-136 53.15 288 H-136 53.15 288 H-137 45.75 280 H-138 61.77 230 H-138 66.3 290 H-138 66.3 290 H-138 66.53 290 H-138 66.53 290 H-138 66.53 290 H-138 66.53 290 H-138 76.54 293 H-140 65.27 293 H-140 65.27 293 H-140 65.27 293 H-141 65.24 293 H-141 65.4 293 H-144 66.54 297 H-144 66.54 297 H-144 66.54 297 H-146 66.54 297 H-146 66.54 297 H-146 66.54 <															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	288	H-136		288	H-136					288	H-136	53.15	288		53.15
281 H-138 81.7 281 H-138 78.85 281 H-138 76.21 291 H-138 76.21 282 H-14 129.2 H-14 129.2 H-14 145.51 223 H-140 85.65 293 H-140 65.22 293 H-140 85.65 293 H-140 85.65 295 H-142 75.3 295 H-142 74.14 295 H-142 70.57 295 H-142 70.57 296 H-143 86.07 296 H-144 66.41 297 H-144 66.51 297 H-144 66.42 297 H-144 66.51 297 H-144 66.54 297 H-144 66.54 297 H-144 66.45 297 H-144 66.54 297 H-144 66.54 390 H-147 498.57															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
233 H-140 86.76 233 H-140 83.52 233 H-140 80.52 233 H-140 80.52 234 H-141 63.27 234 H-141 63.67 233 H-140 80.52 235 H-142 75.3 235 H-142 72.57 234 H-141 59.7 236 H-143 80.61 235 H-142 70.57 236 H-143 80.12 237 H-144 66.41 237 H-144 66.41 237 H-144 66.42 239 H-146 48.52 239 H-146 48.51 238 H-146 48.51 300 H-146 48.52 230 H-146 48.52 230 H-146 48.51 301 H-146 48.52 230 H-166 130.7 230 H-16 48.51 302 H-161 31.61 302 146 48.52 230 H-144 48.51															
294 H-141 63.27 294 H-141 61.27 295 H-142 73.3 295 H-142 73.3 295 H-142 73.3 295 H-142 70.57 296 H-142 70.57 296 H-143 80.12 296 H-142 70.57 296 H-144 70.57 296 H-144 40.12 296 H-144 40.65.1 206 11.42 40.17 40.17 40.17 40.17 40.17 40.17 40.16															
295 H-142 75.3 296 H-142 76.3 296 H-143 80.12 297 H-143 80.11 296 H-143 80.12 296 H-143 80.12 298 H-145 213.32 298 H-146 215.55 298 H-145 213.20 298 H-146 216.51 298 H-146 217.71 208 H-147 55.84 300 H-147 55.84 300 H-147 55.84 300 H-148 85.7 300 H-147 55.84 300 H-150 410.64 304 H-150 40.64 304 H-150 40.64 304 H-150 40.64 304 H-150 <td></td>															
296 H-143 86.07 296 H-143 86.11 296 H-143 80.12 296 H-143 80.12 297 H-144 70.81 297 H-144 66.61 297 H-144 66.61 299 H-146 48.55 298 H-146 48.55 298 H-146 48.57 300 H-147 60.05 300 H-147 60.23 300 H-147 70.92 301 H-148 87.7 301 H-148 87.7 301 H-148 87.7 302 H-150 303 H-151 150.7 302 H-148 85.7 306 H-152 133.80 306 H-152 130.10 305 H-151 33.16 300 H-148 85.7 306 H-152 133.80 306 H-152 130.10 305 H-151 33.6 306 H-152 130.11 306 H-151 32.6 306 H-152															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	296		86.07	296	H-143	84.61	296		83.11	296		80.12	296		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	311	H-157	212.18	311	H-157	214.54	311	H-157	216.72	311	H-157	215.87	311	H-157	215.24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	319			319				H-164		319			319		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
328 H-172 34.78 328 H-172 39.61 328 H-172 39.41 328 H-172 39.41 329 H-173 28.23 329 H-173 30.25 329 H-173 30.13 329 H-173 29.31 329 H-173 29.31 329 H-173 29.01 330 H-174 28.23 330 H-174 28.07 330 H-174 28.07 330 H-175 26.55 331 H-175 28.1 330 H-175 28.02 330 H-174 28.03 330 H-174 28.02 331 H-175 27.24 330 H-175 27.03 333 H-177 43.53 333 H-177 56.61 333 H-176 27.03 333 H-177 53.59 334 H-178 136.97 334 H-178 137.69 335 H-18 158.4 355 H-18 153.69 335 H-180 148.32 336															
329 H-173 28.23 329 H-173 30.25 329 H-173 30.13 329 H-173 29.31 329 H-173 29.31 330 H-174 26.51 330 H-174 28.07 330 H-174 27.24 330 H-174 26.98 333 H-177 43.53 333 H-177 56.61 333 H-175 27.09 331 H-175 27.09 331 H-175 27.09 331 H-175 27.09 331 H-175 27.09 333 H-177 56.51 333 H-177 56.61 333 H-178 137.69 334 H-178 137.12 334 H-178 136.74 335 H-18 148.03 335 <td< td=""><td></td><td>H-172</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		H-172													
331 H-175 26.55 331 H-175 28.1 331 H-175 28.02 331 H-175 27.29 331 H-175 27.03 333 H-177 43.53 333 H-177 56.3 333 H-177 56.61 333 H-177 54.27 333 H-177 53.59 334 H-178 135.97 334 H-178 136.36 334 H-178 137.69 334 H-178 137.12 334 H-178 136.97 335 H-18 148.09 335 H-18 148.09 335 H-18 158.4 335 H-18 152.21 336 H-180 156.49 336 H-180 153.49 336 H-180 153.49 336 H-180 156.49 336 H-180 153.4	329	H-173	28.23	329	H-173	30.25	329	H-173	30.13	329	H-173	29.31	329	H-173	29.03
333 H-177 43.53 333 H-177 56.3 333 H-177 56.61 333 H-177 54.27 333 H-177 53.59 334 H-178 135.97 334 H-178 136.36 334 H-178 137.69 334 H-178 137.12 334 H-178 136.74 335 H-18 148.03 335 H-18 158.4 335 H-18 153.68 336 H-180 167.29 336 H-180 156.49 336 H-180 153.4															
334 H-178 135.97 334 H-178 136.36 334 H-178 137.69 334 H-178 137.12 334 H-178 136.74 335 H-18 143.99 335 H-18 148.03 335 H-18 158.4 335 H-18 153.68 336 H-180 153.99 336 H-180 167.29 336 H-180 156.49 336 H-180 153.4															
335 H-18 143.99 335 H-18 148.03 335 H-18 158.4 335 H-18 153.68 335 H-18 152.21 336 H-180 148.32 336 H-180 153.99 336 H-180 167.29 336 H-180 156.49 336 H-180 153.4															
336 H-180 148.32 336 H-180 153.99 336 H-180 167.29 336 H-180 156.49 336 H-180 153.4															
	337	H-181	112.19	337	H-181	113.59	337	H-181	121.63	337	H-181	119.61	337	H-181	119.51

Page 2 of 3

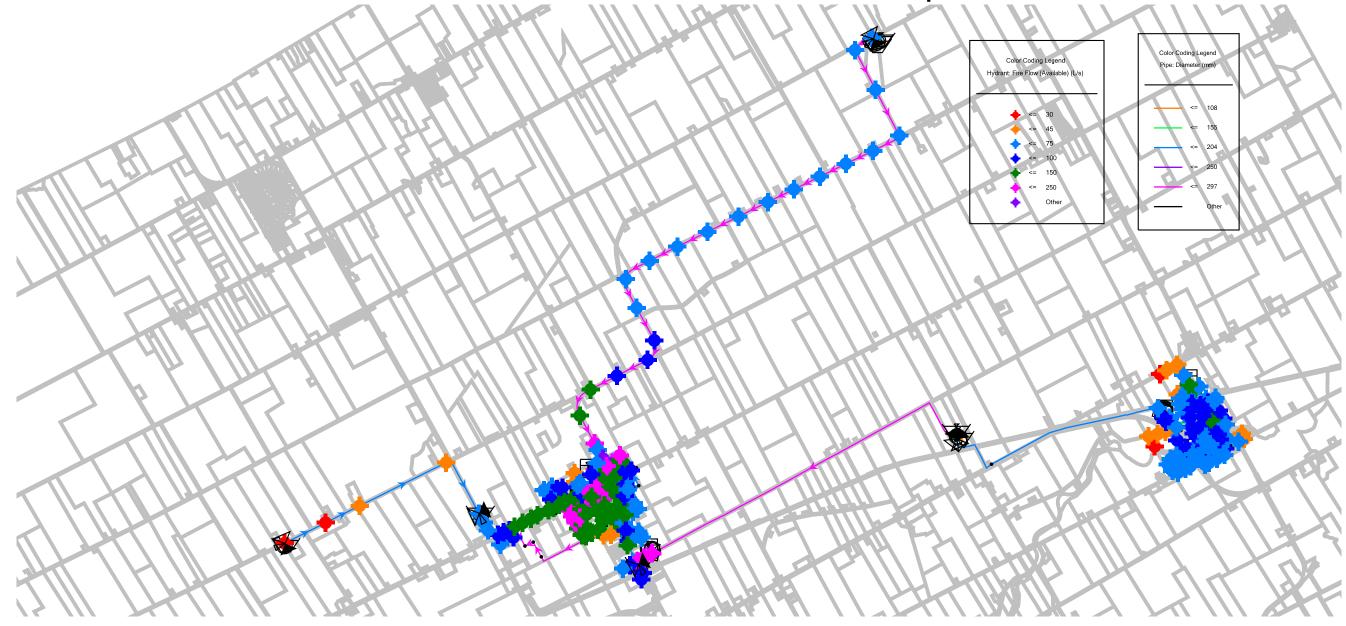
North Dundas (Winchester and Chesterville) - Maximum Day Demand + Fire Flow - With 300mm Main St - Fred St Loop (Near Term +) and 300mm St. Lawrence St Upgrade (Mid Term +)

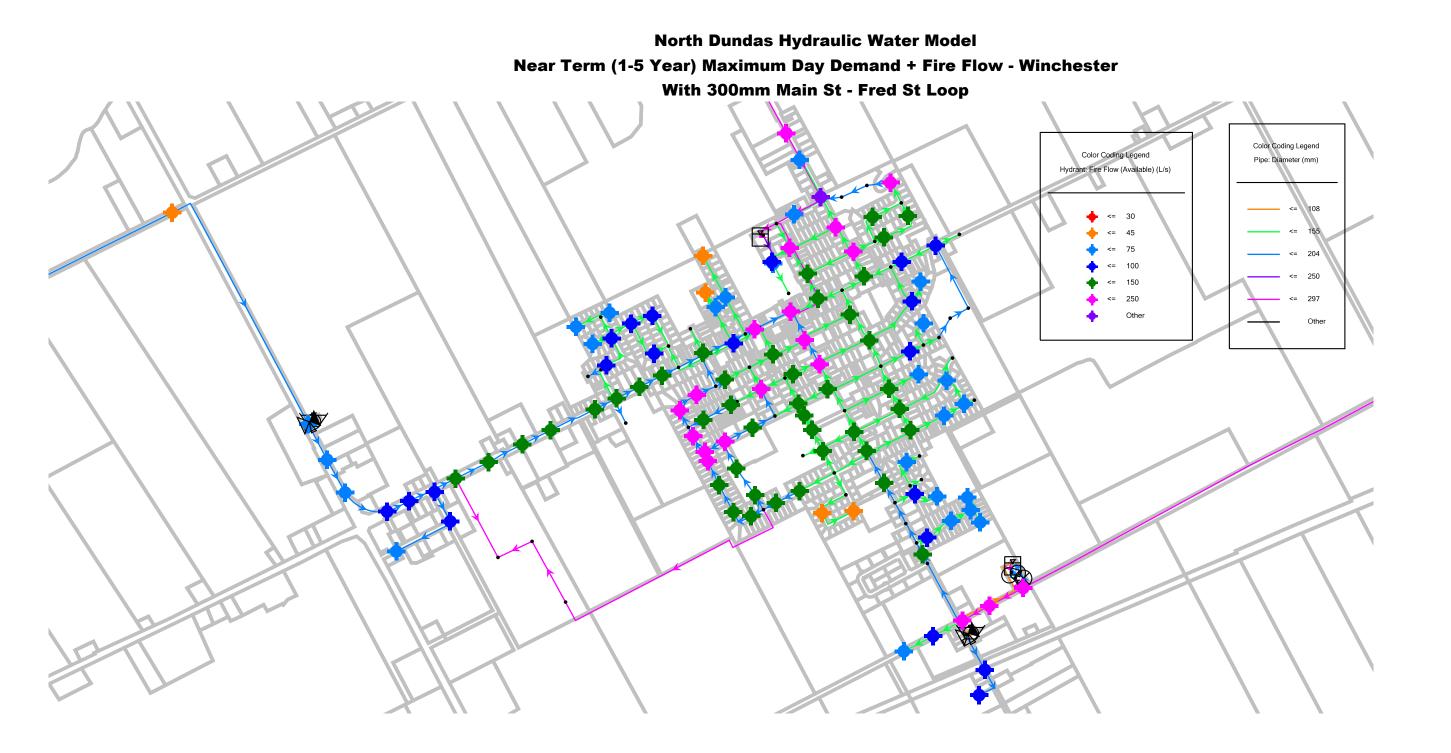
-	-			-										-
	EXISTING	Eine Eleve	10	NEAR TERM		15	MID TERM	Circ Classe		LONG TERM		15	BUILD OUT	
1D 338	Label H-182	Fire Flow 99.86	ID 338	Label H-182	Fire Flow 99.86	ID 338	Label H-182	Fire Flow 127.74	ID 338	Label H-182	Fire Flow 126.08	ID 338	Label H-182	Fire Flow 157.63
339	H-183	66.83	339	H-182	66.58	339	H-182	68.81	339	H-182	68.56	339	H-182	112.1
340	H-184	146.59	340	H-184	149.67	340	H-184	153.21	340	H-184	152.06	340	H-184	151.1
341	H-185	76.85	341	H-185	76.8	341	H-185	75.61	341	H-185	75.31	341	H-185	75.01
342	H-186	51.26	342	H-186	51.26	342	H-186	51.32	342	H-186	51.29	342	H-186	51.27
343	H-187	51.26	343	H-187	51.26	343	H-187	51.29	343	H-187	51.29	343	H-187	51.28
344	H-188	51.23	344	H-188	51.23	344	H-188	51.29	344	H-188	51.26	344	H-188	51.24 52.29
345	H-189	52.27	345	H-189	52.26	345	H-189	52.36	345	H-189	52.31	345	H-189	52.29
346	H-19	154.23	346	H-19	156.93	346	H-19	168.98	346	H-19	163.77	346	H-19	162.1
347	H-190	52.27	347	H-190	52.27	347	H-190	52.36	347	H-190	52.31	347	H-190	52.29
348 349	H-191 H-192	52.22 52.24	348 349	H-191 H-192	52.22 52.24	348 349	H-191 H-192	52.31 52.31	348 349	H-191 H-192	52.27 52.26	348 349	H-191 H-192	52.24 52.26
349	H-192 H-193	52.24	349	H-192 H-193	52.24	349	H-192 H-193	52.36	349	H-192 H-193	52.20	349	H-192 H-193	52.20
351	H-194	52.24	351	H-194	52.24	351	H-194	52.3	351	H-194	52.29	351	H-194	52.26
352	H-195	54.35	352	H-195	54.34	352	H-195	54.41	352	H-195	54.4	352	H-195	54.37
353	H-196	56.78	353	H-196	56.78	353	H-196	56.89	353	H-196	56.85	353	H-196	56.81
354	H-197	59.58	354	H-197	59.58	354	H-197	59.71	354	H-197	59.66	354	H-197	59.62
355	H-198	70.66	355	H-198	70.66	355	H-198	70.91	355	H-198	70.81	355	H-198	70.73
356	H-199	77.32	356	H-199	77.33	356	H-199	77.65	356	H-199	77.52	356	H-199	77.42
357	H-2	100.44	357	H-2	98.52	357	H-2	96.57	357	H-2	92.72	357	H-2	92.72
358	H-20	150.29	358	H-20	150.55	358	H-20	161.74	358	H-20	156.78	358	H-20	155.05
359	H-200	82.6	359	H-200	82.63	359	H-200	83.01	359	H-200	82.85	359	H-200	82.73
360	H-201	93.44	360	H-201	93.5	360	H-201	94	360	H-201	93.78	360	H-201	93.63
361	H-202	107.65	361	H-202	107.78	361	H-202	108.51	361	H-202	108.2	361	H-202	107.98
362	H-203	48.03	362	H-203	47.7	362	H-203	47.33	362	H-203	46.49	362	H-203	46.49
363 364	H-204 H-205	48.01 48.53	363 364	H-204 H-205	47.69 48.21	363 364	H-204 H-205	47.33 47.84	363 364	H-204 H-205	46.5 47	363 364	H-204 H-205	46.5 47
364	H-205 H-207	48.53	364	H-205 H-207	48.21 66.23	364	H-205 H-207	47.84 66.43	364	H-205 H-207	47 66.35	365	H-205 H-207	47 66.29
365	H-207 H-208	62.61	365	H-207 H-208	62.61	365	H-207 H-208	62.77	365	H-207 H-208	62.71	365	H-207 H-208	62.66
367	H-209	161.53	367	H-209	161.75	367	H-209	256.28	367	H-209	250.35	367	H-209	250.96
368	H-21	152.43	368	H-21	155.98	368	H-21	171.08	368	H-21	166	368	H-21	164.48
369	H-210	163.58	369	H-210	163.8	369	H-210	255.24	369	H-210	249.56	369	H-210	250
370	H-211	166.23	370	H-211	166.45	370	H-211	256.98	370	H-211	251.76	370	H-211	252.11
371	H-212	53.5	371	H-212	73.48	371	H-212	86.29	371	H-212	83.68	371	H-212	82.62
372	H-213	53.52	372	H-213	90.97	372	H-213	108.6	372	H-213	102.31	372	H-213	100
373	H-214	96.39	373	H-214	94.6	373	H-214	92.81	373	H-214	89.16	373	H-214	89.16
374	H-215	51.46	374	H-215	51.05	374	H-215	50.6	374	H-215	49.66	374	H-215	49.66
375	H-216	53.3	375	H-216	52.86	375	H-216	52.39	375	H-216	51.37	375	H-216	51.37
376	H-217	55.44	376	H-217	55	376	H-217	54.52	376	H-217	53.5	376	H-217	53.5
377	H-218	55.33	377 378	H-218	55.05	377	H-218	55.67	377 378	H-218	55.48	377 378	H-218	110.57 115.19
378 379	H-219 H-22	49.65 144.86	378	H-219 H-22	49.4 147.97	378 379	H-219 H-22	49.82 167.28	378	H-219 H-22	49.62 163.46	378	H-219 H-22	162.65
380	H-22	49.49	379	H-22	49.26	379	H-22	49.67	379	H-22	49.48	379	H-220	81.3
381	H-221	55.59	381	H-221	102.32	381	H-221	102.45	381	H-221	102.14	381	H-221	102
382	H-222	55.28	382	H-222	108.8	382	H-222	109.15	382	H-222	108.82	382	H-222	108.65
383	H-223	47.25	383	H-223	156.65	383	H-223	157.68	383	H-223	156.98	383	H-223	156.59
384	H-23	173.6	384	H-23	174.96	384	H-23	308.59	384	H-23	293.63	384	H-23	285.64
385	H-24	148.92	385	H-24	149.53	385	H-24	164.77	385	H-24	163.24	385	H-24	161.39
386	H-25	80.18	386	H-25	85.77	386	H-25	89.22	386	H-25	89.12	386	H-25	88.68 57.79
387	H-26	55.19	387	H-26	57.1	387	H-26	57.99	387	H-26	57.95	387	H-26	57.79
388	H-27	65.23	388	H-27	93.1	388	H-27	106.78	388	H-27	108.04	388	H-27	108.19
389	H-28	42.01	389	H-28	76.23	389	H-28	104.79	389	H-28	110.82	389	H-28	119.29
390	H-29	128.11	390	H-29	143.6	390	H-29	149.79	390	H-29	149.28	390	H-29	148.46
391 392	H-3 H-30	82.09 148.58	391 392	H-3 H-30	80.66 152.33	391 392	H-3 H-30	79.2 153.54	391 392	H-3 H-30	76.3 153.02	391 392	H-3 H-30	76.3 152.66
393	H-31	58.74	393	H-31	58.78	393	H-31	58.89	393	H-31	58.84	393	H-31	58.79
393	H-32	129.34	393	H-32	133.65	394	H-32	135.18	393	H-32	134.74	393	H-32	134.26
395	H-33	128.29	395	H-33	130.93	395	H-33	138.35	395	H-33	134.62	395	H-33	133.37
396	H-34	117.76	396	H-34	124.5	396	H-34	130.71	396	H-34	127.4	396	H-34	125.5
397	H-35	94.93	397	H-35	94.03	397	H-35	96.7	397	H-35	95.04	397	H-35	94.18
398	H-36	47.7	398	H-36	47.52	398	H-36	47.68	398	H-36	47.27	398	H-36	46.97
399	H-37	167.98	399	H-37	171.32	399	H-37	190.21	399	H-37	184.4	399	H-37	181.3
400	H-38	220.65	400	H-38	220.42	400	H-38	267.91	400	H-38	260.23	400	H-38	255.39
401	H-39	82.31	401	H-39	77.31	401	H-39	77.52	401	H-39	77.44	401	H-39	77.37
402 403	H-4 H-40	56.27 133.74	402 403	H-4 H-40	55.86 134.19	402 403	H-4 H-40	55.42 142	402 403	H-4 H-40	54.53 140.76	402 403	H-4 H-40	54.53 139.6
403	H-40 H-41	133.74	403	H-40 H-41	134.19	403	H-40 H-41	219.42	403	H-40 H-41	214.55	403	H-40 H-41	211.23
404	H-41 H-42	129.84	404	H-41 H-42	128.64	404	H-41 H-42	137.98	404	H-41 H-42	135.13	404	H-41 H-42	133.63
406	H-43	46.41	406	H-42	46.18	406	H-42	46.37	406	H-42	45.95	406	H-43	45.74
407	H-44	51.67	407	H-44	52.31	407	H-44	52.33	407	H-44	51.81	407	H-44	82.09
408	H-45	134.08	408	H-45	144.73	408	H-45	154.63	408	H-45	144.75	408	H-45	141.95
409	H-46	134.78	409	H-46	146.77	409	H-46	156.83	409	H-46	151.33	409	H-46	148.49
410	H-47	34.12	410	H-47	34.12	410	H-47	34.09	410	H-47	33.86	410	H-47	143.33
411	H-48	56.58	411	H-48	56.54	411	H-48	57.8	411	H-48	57.65	411	H-48	102.77
412	H-49	69.85	412	H-49	70.03	412	H-49	82.62	412	H-49	94.2	412	H-49	93.08
413	H-5	95.75	413	H-5	95.69	413	H-5	97.53	413	H-5	96.72	413	H-5	96.1
414	H-50	66.53	414	H-50	66.66	414	H-50	83.22	414	H-50	109.62	414	H-50	107.94
415	H-51	69.11	415	H-51	69.28	415	H-51	105.13	415	H-51	107	415	H-51	105.48
416 417	H-52 H-53	127.57	416	H-52	131.95	416 417	H-52 H-53	155.05	416 417	H-52 H-53	152.89 77.79	416	H-52 H-53	150.93 79.74
417	H-53 H-54	75.52 80.63	417 418	H-53 H-54	78.13 84.75	417 418	H-53 H-54	78.94 85.9	417	H-53 H-54	84.54	417 418	H-53 H-54	79.74 89.39
-	H-54 H-55	64.52	418	H-54 H-55	84.75 66.19	418	H-54 H-55	85.9 66.54	418	H-54 H-55	84.54 65.72	418	H-54 H-55	68.65
	H-55 H-56	83.75	419	H-55 H-56	90.25	419	H-55	91.66	419	H-55 H-56	90.02	419	H-55	89.14
419 420			420	H-57	129.9	420	H-57	135.31	420	H-57	131.65	420	H-57	129.84
420		80.67												
	H-57 H-58	80.67 95.39	422	H-58	136.35	422	H-58	143.07	422	H-58	139.21	422	H-58	137.1
420 421	H-57				136.35 142.27	422 423	H-58 H-59	143.07 150.2	422 423	H-58 H-59	139.21	422 423	H-58 H-59	137.1
420 421 422 423 424	H-57 H-58 H-59 H-60	95.39 104.8 145.78	422 423 424	H-58 H-59 H-60		423 424	H-59 H-60		423 424	H-59 H-60		423 424	H-59 H-60	143.57 154.3
420 421 422 423	H-57 H-58 H-59	95.39 104.8	422 423	H-58 H-59	142.27	423	H-59	150.2	423	H-59	146.07	423	H-59	143.57

Page 3 of 3

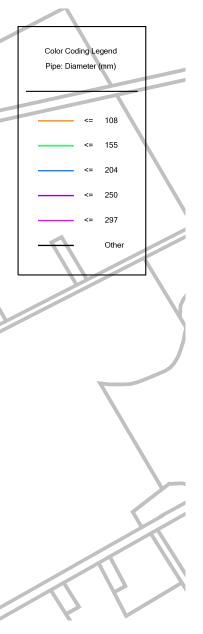
North Dundas (Winchester and Chesterville) - Maximum Day Demand + Fire Flow - With 300mm Main St - Fred St Loop (Near Term +) and 300mm St. Lawrence St Upgrade (Mid Term +)

	EXISTING	
ID	Label	Fire Flow
427	H-63	102.04
428	H-64	64.14
429	H-65	69.27
430	H-66	59.32
431	H-67	55.63
432	H-68	51.49
433	H-69	49.87
434	H-7	87.27
435	H-70	47.07
436	H-71	45.26
437	H-72	84.23
438	H-73	56.46
439	H-74	38.94
440	H-75	139.28
441	H-76	102.33
442	H-77	27.51
443	H-78	30.39
444	H-79	44.47
445	H-8	63.14
446	H-80	36.15
447	H-81	30.67
448	H-82	81.11
449	H-83	92.66
450	H-84	59.85
451	H-85	72.63
452	H-86	90.94
453	H-87	83.91
454	H-88	101.56
455	H-89	123.45
456	H-9	136.26
457	H-90	54.11
458	H-91	37.94
459	H-92	84.64
460	H-93	83.69
461	H-94	63.23
462	H-95	74.83
463	H-96	92.39
464	H-97	86.17
465	H-98	74.39
466	H-99	58.37

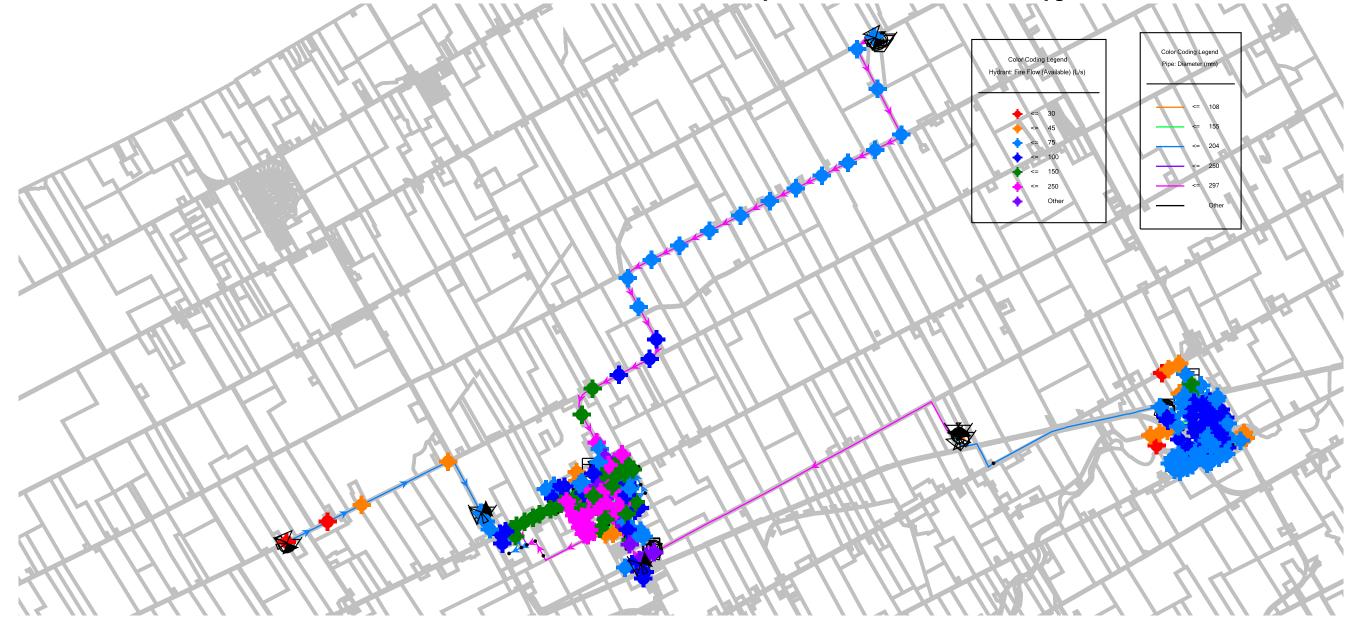

	NEAR TERM	
ID	Label	Fire Flow
427	H-63	103.19
428	H-64	124.48
429	H-65	125.94
430	H-66	117.07
431	H-67	109.72
432	H-68	82.94
433	H-69	75.79
434	H-7	87.21
435	H-70	65.99
436	H-71	60.7
437	H-72	84.35
438	H-73	84.77
439	H-74	51.52
440	H-75	145.19
441	H-76	100.41
442	H-77	27.47
443	H-78	30.36
444	H-79	44.33
444	H-79	63.06
445	H-80	35.99
440	H-81	30.44
448	H-82	80.14
449	H-83	91.3
450	H-84	59.4
451	H-85	71.75
452	H-86	89.33
453	H-87	82.49
454	H-88	99.58
455	H-89	121.59
456	H-9	136.78
457	H-90	53.82
458	H-91	37.87
459	H-92	83.13
460	H-93	82.22
461	H-94	62.46
462	H-95	73.67
463	H-96	90.65
464	H-97	84.62
465	H-98	73.23
466	H-99	57.66
1154	J-270	114
1155	J-271	115.99
1156	J-272	119.94
1157	J-273	114.07
1158	J-274	90.16
1160	J-276	238.43
1161	J-277	182.07
1163	J-279	78.98
1164	J-279	77.6
1104	J-200	11.0

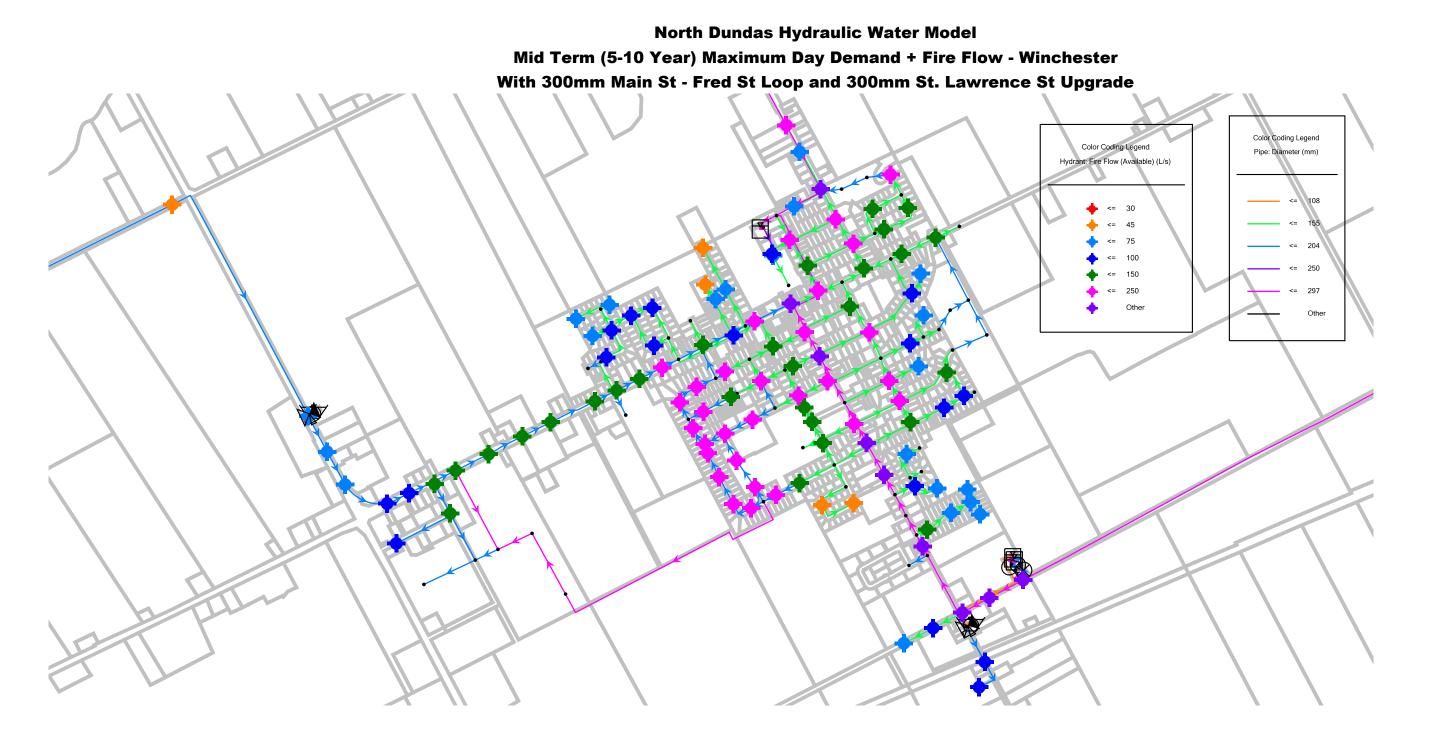

	MID TERM	
ID	Label	Fire Flow
427	H-63	125.09
428	H-64	130.51
429	H-65	130.46
430	H-66	121.97
431	H-67	113.66
432	H-68	88.18
433	H-69	79.07
434	H-7	87.29
435	H-70	67.33
436	H-71	61.37
437	H-72	97.1
438	H-73	99.85
430	H-74	56.17
		155.59
440	H-75	
441	H-76	98.48
442	H-77	27.47
443	H-78	30.35
444	H-79	44.09
445	H-8	59.68
446	H-80	35.87
447	H-81	30.25
448	H-82	79.15
449	H-83	89.89
450	H-84	58.91
451	H-85	70.85
452	H-86	87.68
453	H-87	81.11
454	H-88	97.57
455	H-89	119.71
456	H-9	271.36
457	H-90	53.56
458	H-91	37.77
456 459		81.59
	H-92	
460	H-93	80.74
461	H-94	61.67
462	H-95	72.48
463	H-96	88.91
464	H-97	83.05
465	H-98	72.04
466	H-99	56.95
1151	J-267	87.38
1154	J-270	115.88
1155	J-271	118.2
1156	J-272	122.9
1157	J-273	117.41
1158	J-274	91.49
160	J-276	241.21
1161	J-277	183.57
1163	J-279	120.45
1164	J-280	114.04
1165	J-281	116.39
1165	J-281 J-285	195.26
1171		
171	J-287	112.92

ID	Label	Fire Flow
427	H-63	128.12
428	H-64	119.67
429	H-65	126.61
430	H-66	111.76
431	H-67	106.96
432	H-68	83.58
433	H-69	75.18
434	H-7	86.78
434	H-70	
	-	64.25
436	H-71	58.71
437	H-72	96.3
438	H-73	101.1
439	H-74	56.67
440	H-75	151.06
441	H-76	94.61
442	H-77	27.42
443	H-78	30.29
444	H-79	43.52
445	H-8	59.46
446	H-80	35.65
440	H-80	29.97
447		
	H-82	77.09
449	H-83	87.06
450	H-84	57.75
451	H-85	68.97
452	H-86	84.41
453	H-87	78.27
454	H-88	93.61
455	H-89	115.91
456	H-9	264.63
457	H-90	52.87
458	H-91	37.54
459	H-92	78.5
460	H-93	77.72
461	H-94	60.03
462	H-95	70.1
463	H-96	85.37
464	H-97	79.88
465	H-98	69.66
466	H-99	55.47
1151	J-267	84.52
1152	J-268	103.04
1153	J-269	103.19
1154	J-270	108.92
1155	J-271	111.05
1156	J-272	115.28
1157	J-273	114.69
1158	J-273	89.96
1160	J-274	239.63
1160	J-276 J-277	182.65
1163	J-279	132.15
1164	J-280	123.2
1165	J-281	128.35
1166	J-282	117.35
1169	J-285	191.51
1170	J-286	159.86
1171	J-287	106.25
۰		

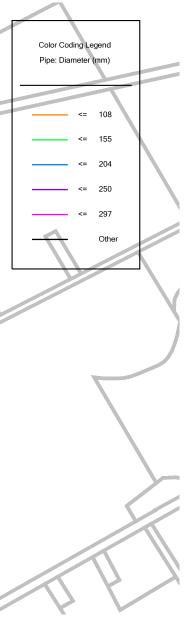

LONG TERM			BUILD OUT			
ID	Label	Fire Flow	ID	Label	Fire Flo	
427	H-63	128.12	427	H-63	126.49	
428	H-64	119.67	428	H-64	116.68	
429	H-65	126.61	429	H-65	123.41	
430	H-66	111.76	430	H-66	109.08	
430						
	H-67	106.96	431	H-67	104.46	
432	H-68	83.58	432	H-68	81.99	
433	H-69	75.18	433	H-69	73.87	
434	H-7	86.78	434	H-7	86.33	
435	H-70	64.25	435	H-70	80.35	
436	H-71	58.71	436	H-71	57.91	
437	H-72	96.3	437	H-72	132.69	
438	H-73	101.1	438	H-73	99.89	
439	H-74	56.67	439	H-74	56.29	
440	H-75	151.06	440	H-75	149.8	
-						
441	H-76	94.61	441	H-76	94.61	
442	H-77	27.42	442	H-77	27.42	
443	H-78	30.29	443	H-78	30.29	
444	H-79	43.52	444	H-79	43.52	
445	H-8	59.46	445	H-8	59.29	
446	H-80	35.65	446	H-80	35.65	
447	H-81	29.97	447	H-81	29.97	
448	H-82	77.09	448	H-82	77.09	
449	H-83	87.06	449	H-83	87.06	
-			-			
450	H-84	57.75	450	H-84	57.75	
451	H-85	68.97	451	H-85	68.97	
452	H-86	84.41	452	H-86	84.41	
453	H-87	78.27	453	H-87	78.27	
454	H-88	93.61	454	H-88	93.61	
455	H-89	115.91	455	H-89	115.91	
456	H-9	264.63	456	H-9	271.1	
457	H-90	52.87	457	H-90	52.87	
458	H-91	37.54	458	H-91	37.54	
459	H-92	78.5	459	H-92	78.5	
460	-		460	-		
	H-93 H-94	77.72 60.03	461	H-93 H-94	77.72	
461			-	-		
462	H-95	70.1	462	H-95	70.1	
463	H-96	85.37	463	H-96	85.37	
464	H-97	79.88	464	H-97	79.88	
465	H-98	69.66	465	H-98	69.66	
466	H-99	55.47	466	H-99	55.47	
1151	J-267	84.52	1151	J-267	83.42	
1152	J-268	103.04	1152	J-268	100.63	
1153	J-269	103.19	1153	J-269	100.55	
1154	J-270	108.92	1154	J-209	106.35	
1154			1154			
	J-271	111.05		J-271	108.39	
1156	J-272	115.28	1156	J-272	112.55	
1157	J-273	114.69	1157	J-273	113.42	
1158	J-274	89.96	1158	J-274	93.66	
1160	J-276	239.63	1159	J-275	87.69	
1161	J-277	182.65	1160	J-276	238.76	
1163	J-279	132.15	1161	J-277	182.12	
1164	J-280	123.2	1162	J-278	103.3	
1165	J-281	128.35	1163	J-279	126.7	
1166	J-282	117.35	1164	J-280	121.04	
1169	J-285	191.51	1165	J-281	126.13	
1170	J-286	159.86	1166	J-282	115.44	
1171	J-287	106.25	1167	J-283	113.88	
			1168	J-284	176.14	
			1169	J-285	190.96	
			1170	J-286	159.1	
			1171	J-287	103.79	

North Dundas Hydraulic Water Model Near Term (1-5 Year) Maximum Day Demand + Fire Flow With 300mm Main St - Fred St Loop

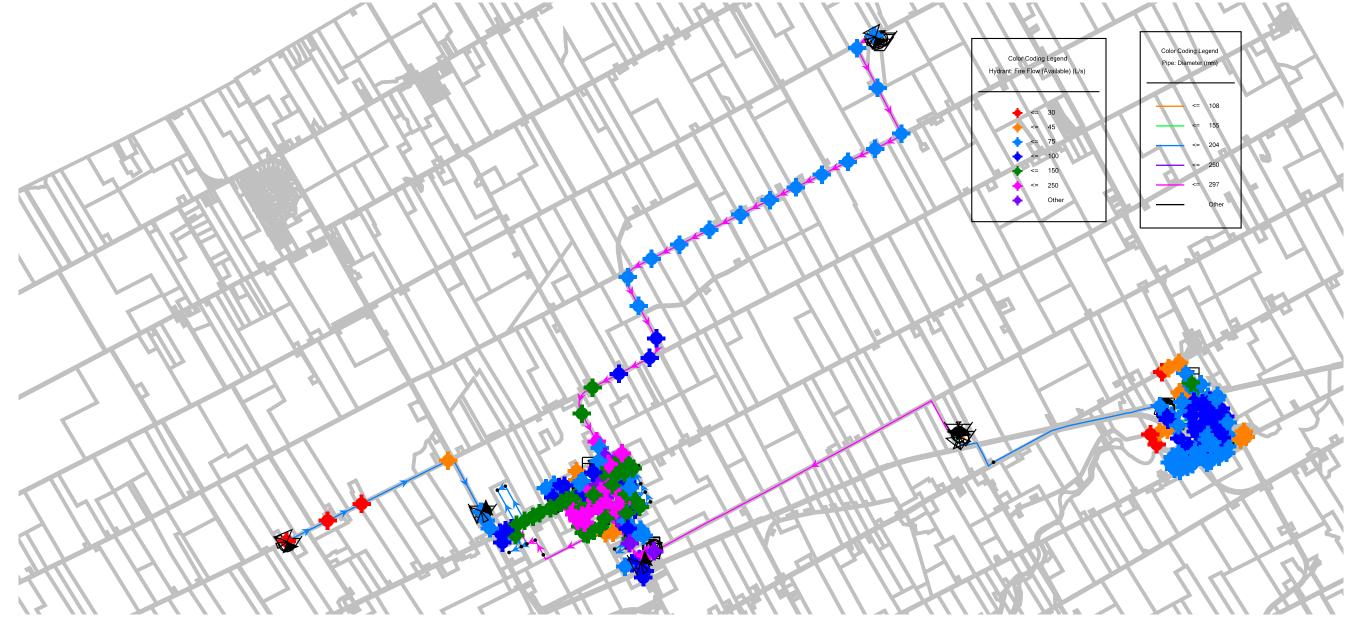


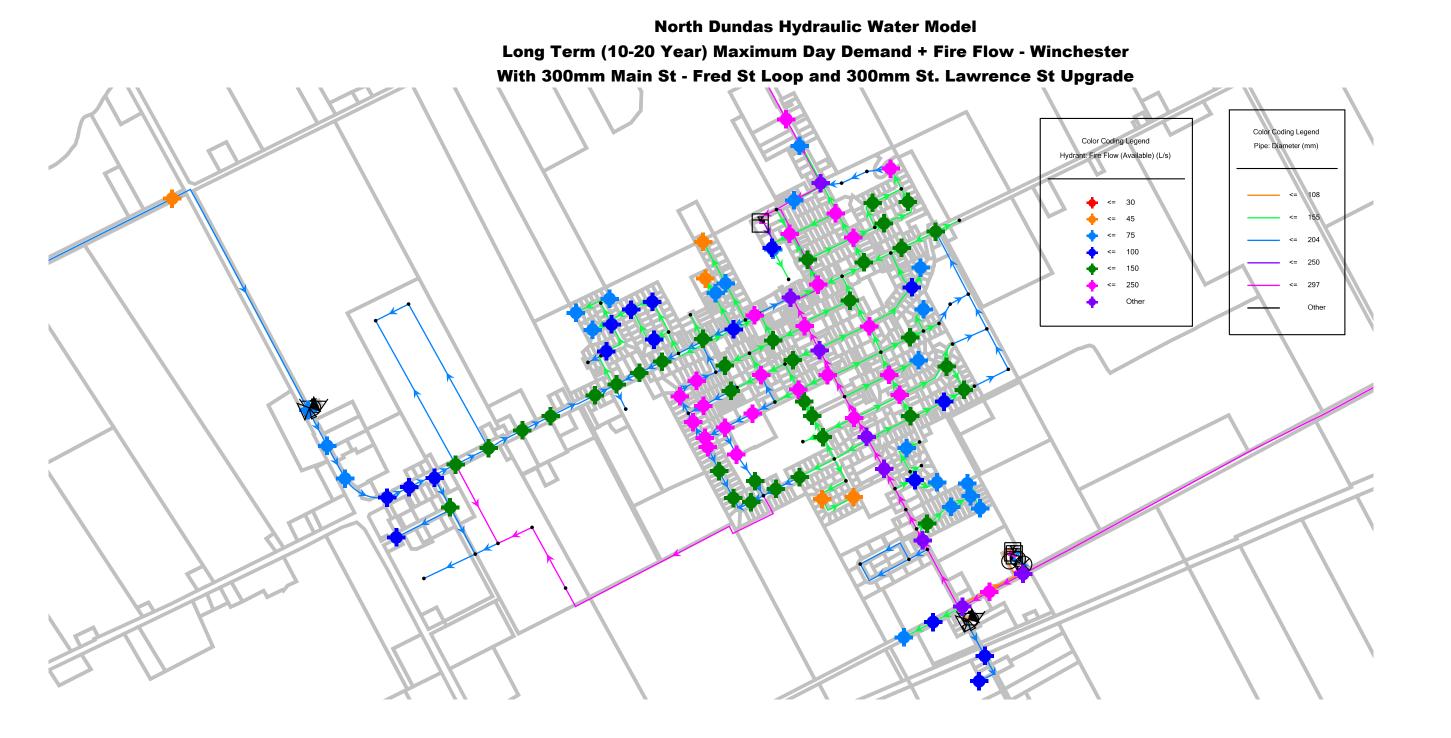


North Dundas Hydraulic Water Model Near Term (1-5 Year) Maximum Day Demand + Fire Flow - Chesterville With 300mm Main St - Fred St Loop Color Coding Legend Hydrant: Fire Flow (Available) (L/s) <= 30 <= 75 <= 100 150 <= <= 250 Othe

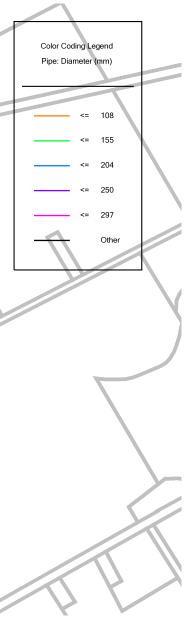


North Dundas Hydraulic Water Model Mid Term (5-10 Year) Maximum Day Demand + Fire Flow With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade

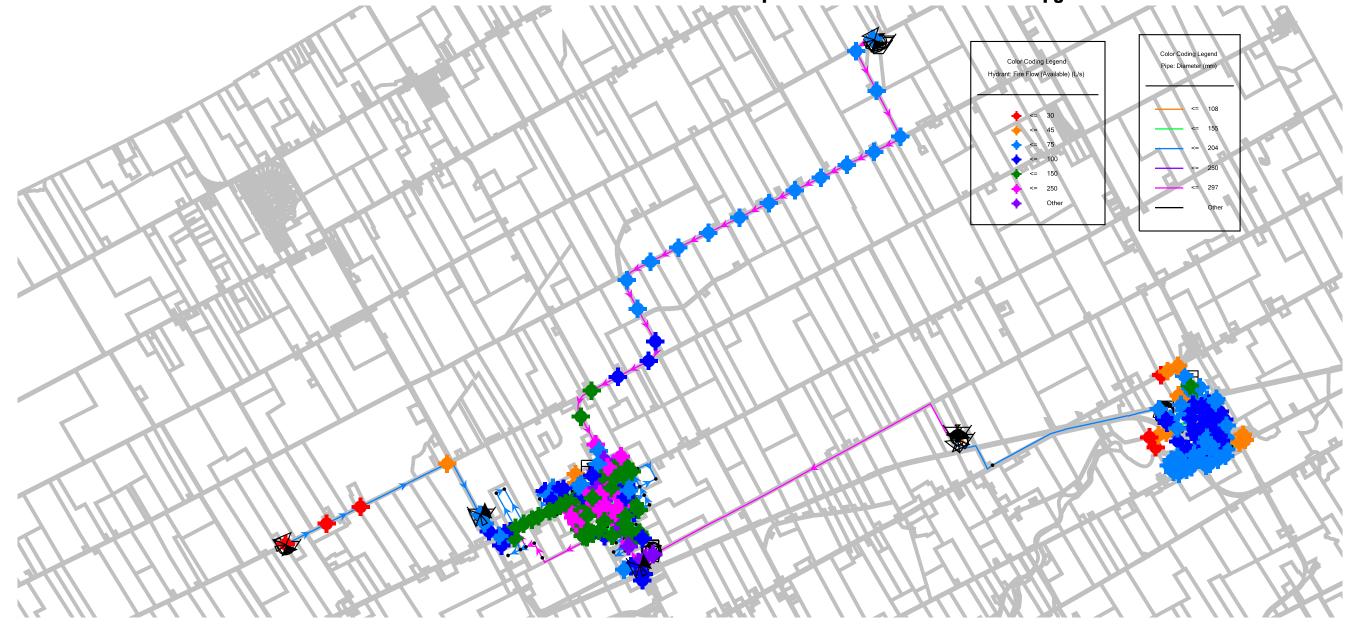


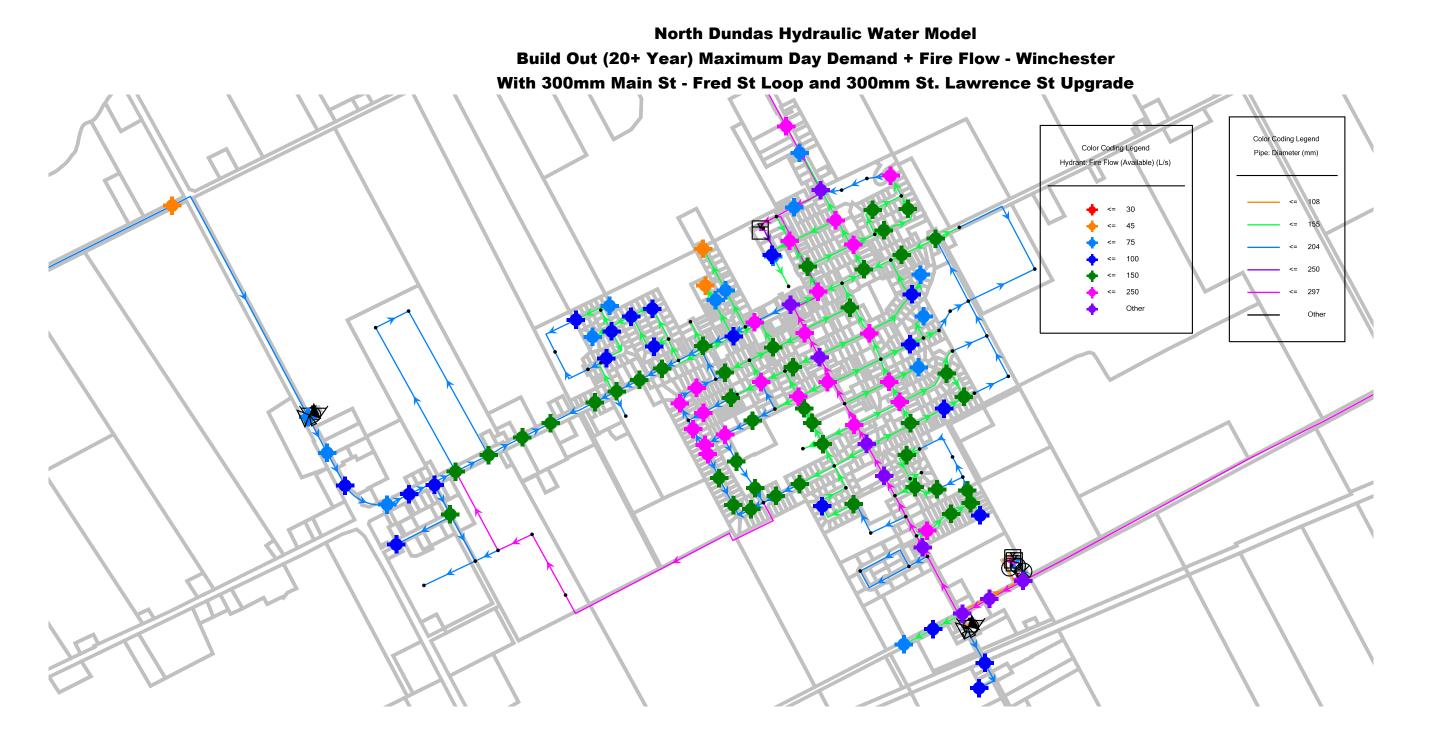


North Dundas Hydraulic Water Model Mid Term (5-10 Year) Maximum Day Demand + Fire Flow - Chesterville With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade Color Coding Legend Hydrant: Fire Flow (Available) (L/s) <= 30 <= 75 <= 100 150 <= 250 <= Oth

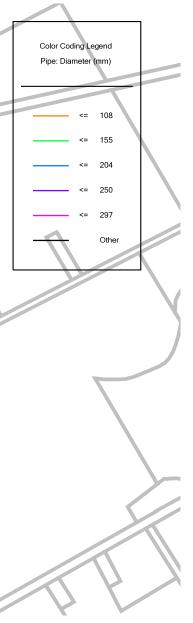


North Dundas Hydraulic Water Model Long Term (10-20 Year) Maximum Day Demand + Fire Flow With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade





North Dundas Hydraulic Water Model Long Term (10-20 Year) Maximum Day Demand + Fire Flow - Chesterville With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade Color Coding Legend Hydrant: Fire Flow (Available) (L/s) <= 30 <= 75 <= 100 150 <= 250 <= Oth



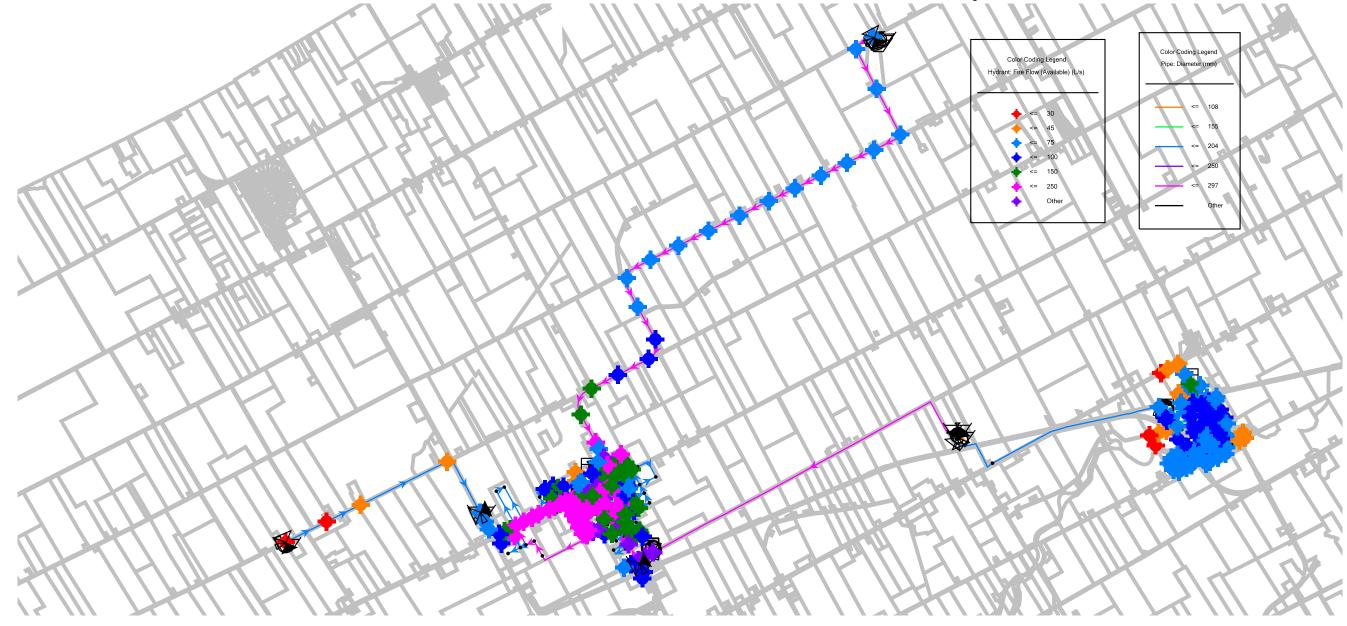
North Dundas Hydraulic Water Model Build Out (20+ Year) Maximum Day Demand + Fire Flow With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade

North Dundas Hydraulic Water Model Build Out (20+ Year) Maximum Day Demand + Fire Flow - Chesterville With 300mm Main St - Fred St Loop and 300mm St. Lawrence St Upgrade Color Coding Legend Hydrant: Fire Flow (Available) (L/s) <= 30 <= 75 <= 100 150 <= 250 <= Oth

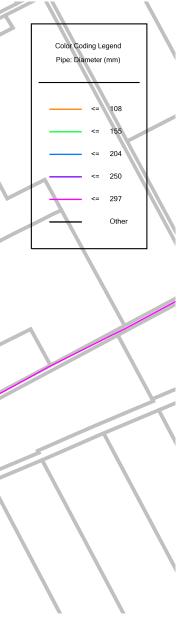
BUILD OUT		
ID Label Fire Flow		
	59.54	
	290.01	
	75.75	
	78.69	
	83.33	
	75.53	
	53.09	
	54.37	
	52.82	
	52.39	
	51.3	
	49.09	
	286.66	
	<u>∠00.00</u> 47.4	
	47.4 69.87	
	70.27	
	82.72	
	70.27	
	71.11	
	69.12	
	74.8	
	66.32	
	63.87	
	257.31	
	66.4	
	54.66	
	76.74	
	81.21	
	89.34	
	84.81	
	91.27	
H-128	39.07	
	39.15	
	226.62	
	52	
H-131	53.4	
H-132	43.39	
H-133	106.26	
H-134	57.84	
H-135	44.47	
H-136	53.15	
H-137	45.88	
H-138	81.53	
H-139	76.21	
H-14	194.51	
H-140	80.52	
п-140	00.52	
	Label H-10 H-100 H-101 H-102 H-103 H-103 H-103 H-104 H-105 H-106 H-107 H-108 H-109 H-110 H-110 H-111 H-110 H-111 H-112 H-113 H-114 H-115 H-116 H-117 H-118 H-117 H-118 H-117 H-118 H-118 H-117 H-120 H-121 H-121 H-120 H-121 H-122 H-123 H-124 H-125 H-128 H-128 H-128 H-129 H-121 H-121 H-121 H-121 H-121 H-121 H-121 H-121 H-123 H-131 H-131 H-132 H-134 H-135 H-136 H-137 H-138 H-138 H-139 H-138 H-139 H-14	

BUILD OUT		
ID Label Fire Flow		
295	H-142	70.57
295	H-142	80.12
290	H-143	66.49
297	H-145	216.77
298	H-145 H-146	48.57
	H-140 H-147	40.57
300	H-147 H-148	
301 302	H-146 H-149	103.61 94.75
		94.75 188.29
303	H-15 H-150	
304		42.02
305	H-151	33.47
306	H-152	211.62
307	H-153	145.9
308	H-154	166.01
309	H-155	107.33
310	H-156	326.88
311	H-157	215.22
312	H-158	166.02
313	H-159	58.05
314	H-16	206.32
315	H-160	126.06
316	H-161	111.21
317	H-162	230.67
318	H-163	92.69
319	H-164	264.2
320	H-165	115.95
321	H-166	169.23
322	H-167	26.37
323	H-168	86.92
324	H-169	70.29
325	H-17	208.46
326	H-170	45.98
327	H-171	44.07
328	H-172	40.31
329	H-173	30.3
330	H-174	28.07
331	H-175	28.1
333	H-177	60.27
334	H-178	136.75
335	H-18	179.19
336	H-180	214.79
337	H-181	122.73
338	H-182	159.42
339	H-183	112.58
340	H-184	151.09
341	H-185	75.03
342	H-186	51.27

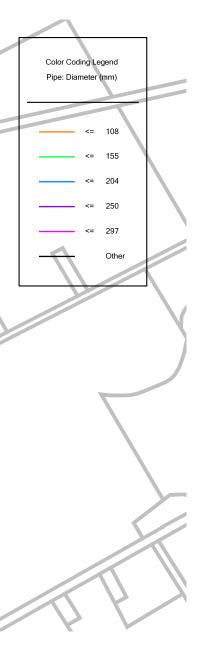
Г


BUILD OUT		
ID	Label	Fire Flow
343	H-187	51.28
344	H-188	51.24
345	H-189	52.29
346	H-19	193.91
347	H-190	52.29
348	H-191	52.24
349	H-192	52.26
350	H-193	52.29
351	H-194	52.26
352	H-195	54.37
353	H-196	56.81
354	H-197	59.62
355	H-198	70.74
356	H-199	77.42
357	H-2	92.72
358	H-20	183.19
359	H-200	82.73
360	H-201	93.64
361	H-202	107.99
362	H-202	46.49
363	H-204	46.5
364	H-204	40.5
365	H-207	66.29
366	H-207 H-208	62.66
367	H-209	257.86
368	H-21	185.99
369	H-210	256.12
370	H-210	257.61
370	H-212	98.19
372	H-213	155.08
372	H-213 H-214	89.16
373	H-214 H-215	49.66
374	H-215 H-216	49.66 51.37
375	H-210 H-217	53.5
	H-217 H-218	111.01
377		
378	H-219	115.73
379	H-22	169.65
380	H-220	81.38
381	H-221	101.98
382	H-222	108.63
383	H-223	156.58
384	H-23	297.34
385	H-24	161.48
386	H-25	88.62
387	H-26	57.72
388	H-27	108.14
389	H-28	119.27

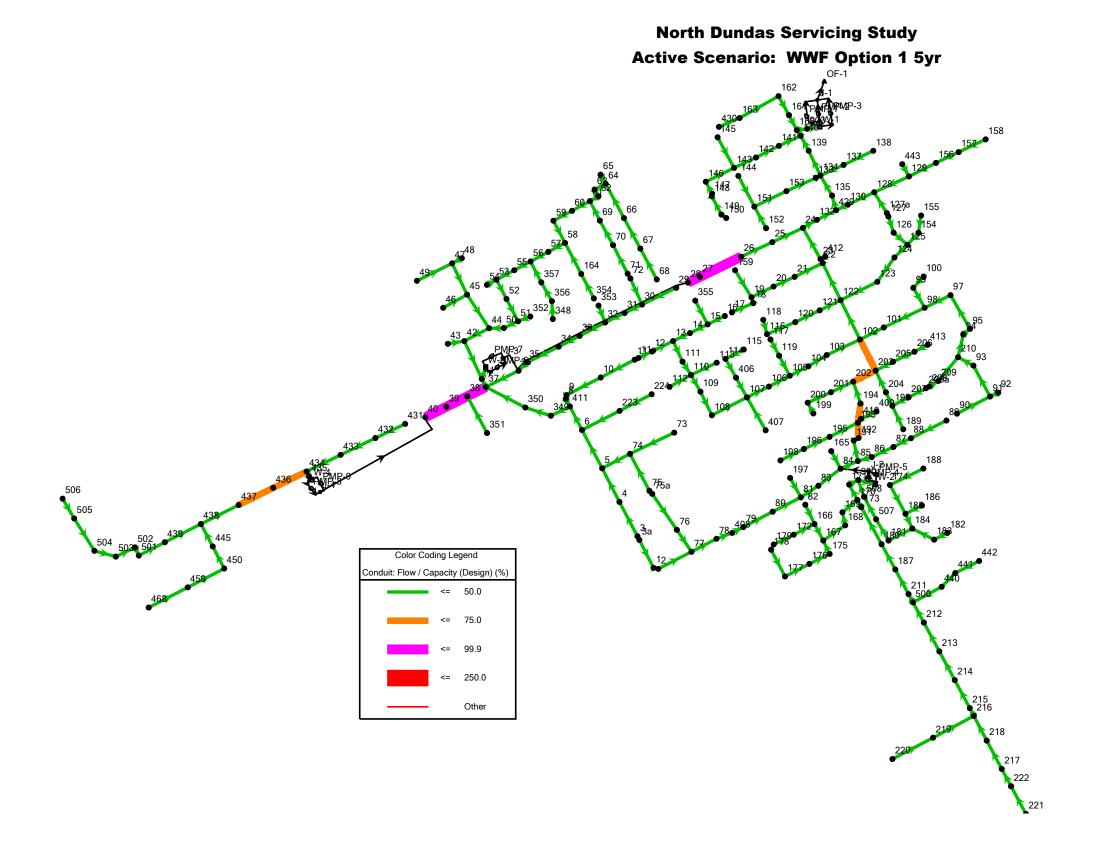
IDLabelFire Flow390H-29148.42391H-376.3392H-30152.62393H-3158.79394H-32134.24395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-56104.25	BUILD OUT		
390H-29148.42391H-376.3392H-30152.62393H-3158.79394H-32134.24395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
391H-376.3392H-30152.62393H-3158.79394H-32134.24395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
392H-30152.62393H-3158.79394H-32134.24395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
393H-3158.79394H-32134.24395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-50107.95416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
394H-32134.24395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
395H-33151.46396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
396H-34180.56397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
397H-35100.71398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
398H-3649.4399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
399H-37268.05400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
400H-38297.94401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
401H-3977.37402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
402H-454.53403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
403H-40139.57404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
404H-41212.36405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
405H-42141.2406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
406H-4347.63407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
407H-4493.4408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29		H-43	
408H-45222.05409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29	407		
409H-46199.47410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
410H-47144.82411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29	409		
411H-48103.08412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29		H-47	
412H-4993.06413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
413H-596.28414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
414H-50107.95415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29	413	H-5	
415H-51105.48416H-52151.37417H-5389.71418H-54103.72419H-5575.29			
416H-52151.37417H-5389.71418H-54103.72419H-5575.29	415		
417H-5389.71418H-54103.72419H-5575.29	416		151.37
419 H-55 75.29	417	H-53	
	418	H-54	103.72
420 H-56 104 25	419	H-55	75.29
	420	H-56	104.25
421 H-57 205.03	421	H-57	205.03
422 H-58 218.38	422	H-58	218.38
423 H-59 226.03		H-59	226.03
424 H-60 207.76	424	H-60	
425 H-61 176.77	425	H-61	
426 H-62 143.77	426	H-62	143.77
427 H-63 126.82	427	H-63	126.82
428 H-64 186.99	428	H-64	
429 H-65 193.41	429	H-65	
430 H-66 180.01	430	H-66	180.01
431 H-67 174.85			
432 H-68 108.11			
433 H-69 92.1	433	H-69	
434 H-7 86.41	434		
435 H-70 74.37	435	H-70	74.37
436 H-71 66.34	436	H-71	66.34

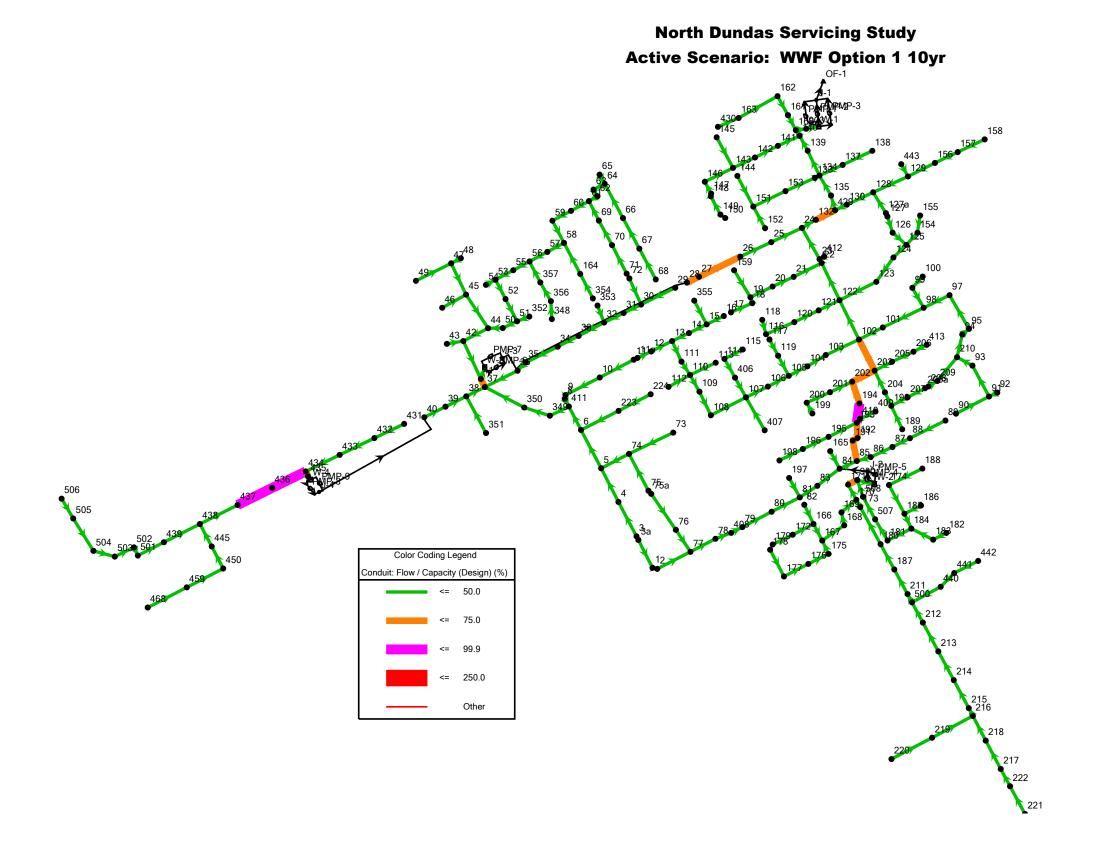

BUILD OUT			
ID Label Fire Flow			
437	H-72	133.62	
438	H-73	99.85	
439	H-74	56.21	
440	H-75	173.81	
441	H-76	94.61	
442	H-77	27.42	
443	H-78	30.29	
444	H-79	43.52	
445	H-8	59.28	
446	H-80	35.65	
447	H-81	29.97	
448	H-82	77.09	
449	H-83	87.06	
450	H-84	57.75	
451	H-85	68.97	
452	H-86	84.41	
453	H-87	78.27	
454	H-88	93.61	
455	H-89	115.91	
456	H-9	281.41	
457	H-90	52.87	
457	H-90 H-91		
	H-91 H-92	37.54	
459	H-92 H-93	78.5 77.72	
460	H-93 H-94		
461		60.03	
462	H-95	70.1	
463	H-96	85.37	
464	H-97	79.88	
465	H-98	69.66	
466	H-99	55.47	
1151	J-267	100.66	
1152	J-268	126.11	
1153	J-269	126.08	
1154	J-270	179.51	
1155	J-271	184.43	
1156	J-272	194.06	
1157	J-273	160.58	
1158	J-274	110.33	
1159	J-275	101.45	
1160	J-276	238.76	
1161	J-277	182.11	
1162	J-278	103.32	
1163	J-279	126.77	
1164	J-280	121.06	
1165	J-281	126.2	
1166	J-282	115.47	
1167	J-283	114.36	

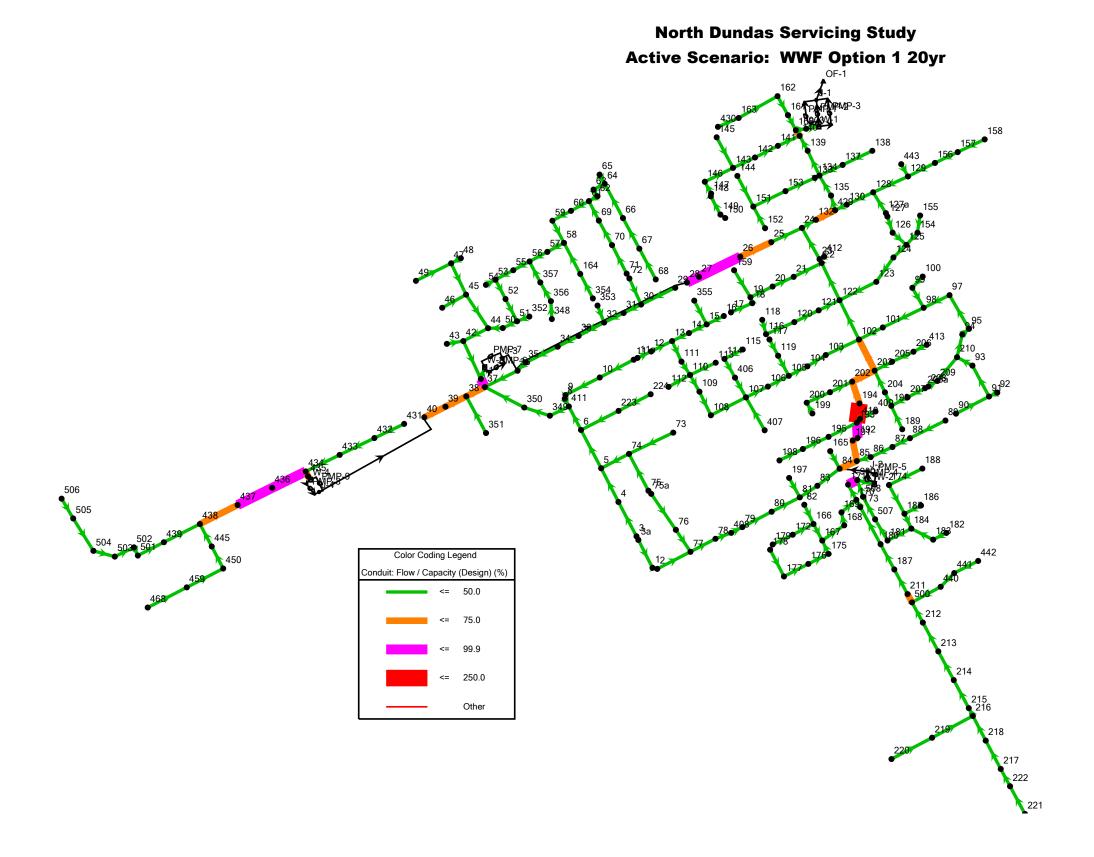
BUILD OUT		
ID	Label	Fire Flow
1168	J-284	178.85
1169	J-285	193.8
1170	J-286	160.55
1171	J-287	166.44
1205	J-289	119.75


North Dundas Hydraulic Water Model Build Out (20+ Year) Maximum Day Demand + Fire Flow With Full 300mm Winchester Watermain Loop




North Dundas Hydraulic Water Model Build Out (20+ Year) Maximum Day Demand + Fire Flow - Chesterville With Full 300mm Winchester Watermain Loop Color Coding Legend Hydrant: Fire Flow (Available) (L/s) <= 30 <= 75 <= 100 150 <= <= 250 Oth




Attachment 3


HYDRAULIC SEWER MODEL SCHEMATICS

